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Based off of the Parameter Estimation Lab by Dr. Marisa Eisenberg found here and here

Part 1: Recall our model
Here we resume our exploration of the following model:

with measurement equation . In this case we are using the reparameterized model where we use the following definition:

S(t) : susceptible fraction of the population at time t
I(t) : infected fraction of the population at time t
R(t) : removed fraction of the population at time t

 : infection rate; expected number of secondary infections per time t
 : recovery rate;  is average time a person is infectious/infected

 : death rate

We assumed the birth and death rates are slow enough to assume . This assumption is only valid for fast acting diseases. As such, let's define our "true"

parameter set such that , , and 

Ok then we will provide for you the code we generated last session:

Python Hint: Why did I separate the coding blocks that contain libraries and function definitions versus parameter settings and function calls? Generally it is

good coding practice to write your functions in a file separate from variables and parameters that you the user will change. This will help prevent user errors. We

first call our libraries and functions, and only then do we run our code experiments.

Let's also take a moment to remember how the likelihood function NLL  could be used to estimate our parameters by wrapping it in an optimizer!

The parameter estimates are beta = 0.3999, gamma = 0.2468, and kappa = 80256.57055016875

Part 2: Fisher Information Matrix
Ok we are all caught up on where we left off. Let's set up a new function to calculate the Fisher Information Matrix. Recall from the lecture, the exact definition of

the Fisher Information Matrix is:

How do we translate this into code? The expectation function is going to be dependent on your model and likelihood function , so we need to write code

specific to the SIR model. We are not going to walk through this particular derivation and instead we will spend time learning how to make sense of the results.

Note: The FIM is a statistical method dependent on the quality of your data , where z is defined as , where  is the measurement equation and  is

the error in each measurement of that output. If you are unable to characterize or limit the noise in your ouput data , then all you will get is nonsense. As the

age old saying goes: Garbage in, garbage out.

Here is the FIM function for the SIR model:

Note: This FIM code is a numerical approximation method. Specifically,  is using a numerical approximation for the derivative. Ariel Citrón Arias's

slides found here give a nice introduction to estimation and sensitivity equations using the forward sensitivity equations instead.

Ok so now that we have our function, model, and data, let's try running this example and see what the FIM looks like and explore some of its features!

Write a line of code to generate the FIM for our model by looking at how the function call was defined above.

[[1.98066299e+10 1.10016690e+10 3.77053476e+04]
 [1.10016690e+10 1.10680375e+10 2.59296580e+04]
 [3.77053476e+04 2.59296580e+04 7.68473201e-02]]

Python Hint: Are you wondering how to see what the objects you created actually look like? Try the  function. For example, after you generate the object

called "FIM", in the next line write: . Click "Run" in the upper left corner and see what happens!

Using np.linalg.matrix_rank() , calculate the rank of your new matrix.
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Let's Ponder: What do we expect the structure of the FIM to look like? What does this tell us about the identifiability of the model? Try it out with the other un-

scaled SIR model given in Lab (1) (or you can use the un-scaled SIR from the parameter estimation lab) -- how does that change things?

As a note to yourself, write down some of your findings and thoughts in the Markdown box below OR add new coding boxes to explore the suggested problems!

Part 3: Generating Profile Likelihoods
The recovery rate  is often approximately known, so let’s fix the value of . Now we have only two unknown parameters,  and . We want to plot the

likelihood as a surface or heat map as a function of  and  (i.e. so that color is the likelihood value, and your x and y axes are the  and  values respectively.

Note: Recall that  is the recovery rate, and  is the time spent in state , or "time spent infected/infectious". Generally, a person is considered "infected" in our

model when they present symptoms of disease. Symptoms of disease are noticeable, so we can often accurately approximate the "time spent

infected/infectious" -- the inverse value of ! Therefore,  is often known within some bound of uncertainty.

As an example, here’s some code to plot the likelihood for the Poisson case we used earlier. First, choose your own  and  range of value to explore and their

interval.

Use np.arange  to define a sequence of values for  and  that you want to itterate through. Use np.zeros  to
generate a blank matrix called "likevals" to store the likelihood values in.

[0.35 0.36 0.37 0.38 0.39 0.4  0.41 0.42 0.43 0.44 0.45]
[100000.          90909.09090909  83333.33333333  76923.07692308
  71428.57142857  66666.66666667  62500.          58823.52941176
  55555.55555556  52631.57894737  50000.        ]

I have sketched out some "for" loops for you.

How do we populate each value of the "likevals" matrix using the NLL  functions?

-219872.58994041744
-207845.17307756317

Ok now that we have the Liklihood values for different  and  combinations, let's plot this matrix as a contour to visually assess what our results are. You can try

different ranges for beta and kappa depending on how far out you want to look at the plot!

How does the shape of the likelihood change as you switch likelihood functions?

It may not change much, but you can often notice small differences between likelihood choices. What does the likelihood landscape tell us about the parameter

identifiability of this model, assuming  is known?

Please write a discussion of your findings in the Markdown box that follows.

Part 4: Profile Likelihood to Confidence Bounds on Parameters
Now we have started to learn how a liklihood space might look if we fix one of our parameters and explore the combinations of other parameters. But in the lecture,

we discussed looking at the likelihood plots of singular parameters when letting all parameters vary in value.

In this section, we will explore Profile Likelihood Plots and Likelihood-based Confidence Intervals.

To make our lives a little easier, I am not going to make you write the profile likelihood generator code. Instead, let's walk through the profile likelihood generator

code and make sure that we have an understanding of what it does, and more importantly does what it claims to do!

Hopefully you wrote yourself notes in the code above. Now let's start by defining our confidence interval.

For the threshold to use in determining your confidence intervals, we note that  (where NLL is the negative log likelihood) is approximately 

-distributed with degrees of freedom equal to the number of parameters fitted (including the profiled parameter). Then an approximate 95% (for example)

confidence interval for  can be made by taking all values of  that lie within the 95  percentile range of the -distribution for the given degrees of freedom.

In this case, for a 95% confidence interval, we have three total parameters we are estimating ( , and ), so the  value for the 95  percentile is 7.8147. Then

the confidence interval is any  such that:

In other words, our threshold is , where  is the cost function (aka likelihood function) value at our parameter

estimates from Part (1).

Below we have provided code that automatically generates an appropriate confidence threshold.

Now that we can determine if our parameter estimate is reasonable using our threshold, let's try profiling the parameters with a profile likelihood plot, as seen in our

earlier lectures.

Are the parameters practically idenitifiable? Why or why not?

Starting profile...
Profiles have been generated.
['gamma', 'k']
[0.2467700281939366, 80256.57055016875]
Starting profile...
Profiles have been generated.
['beta', 'k']
[0.3998601220411401, 80256.57055016875]
Starting profile...
Profiles have been generated.
['beta', 'gamma']
[0.3998601220411401, 0.2467700281939366]

Starting profile...
Profiles have been generated.
Starting profile...
Profiles have been generated.
Starting profile...
Profiles have been generated.

What do we learn from the 2 parameter relationship analysis?

Part 5: Bonus! Back to that real life drama
Lastly, let us consider the case where you are attempting to fit and forecast an ongoing epidemic (i.e. with incomplete data). Truncate your data to only include the

first seven data points (i.e. just past the peak), then re-fit the model parameters and generate the profile likelihoods with the truncated data (you can also see if

truncating the data affects the FIM rank!).

How do your parameter estimates change?

Does the practical identifiability of the parameters change? How so?

If any of the parameters were unidentifiable, examine the relationships between parameters that are generated in the profile likelihoods. Can you see any

interesting relationships between parameters? What do you think might be going on—why has the identifiability changed?

Please add coding and markdown blocks below this section as you explore and answer the above questions! Remember to document and annotate your code so

you can look back at this later.

= µ − βSI − µS

= βSI − γI − µI

= γI − µR,

(1)

(2)

(3)

dS

dt
dI

dt
dR

dt

y = kI

β

γ 1
γ

µ

µ = 0
β = 0.4 γ = 0.25 κ = 80000.

In [15]: #### Import the relevant libraries ####
from math import *                         # useful math functions
import numpy as np                         # useful array objects 
                                           # (also a core scientific computing library)

from scipy.integrate import odeint as ode  # ode solver
import matplotlib.pyplot as plt            # nice plotting commands, very similar to Matlab commands
from scipy.stats import poisson
from scipy.stats import norm
import scipy.optimize as optimize          #optimizer function package

#### Redefine the functions we wrote ####
def model(ini, time_step, params):
    #Define our ODE model
    
    ###########################
    #Input:
    #   ini           initial inputs for the state variables S, I, R
    #   time_step     time step definition; used by the ODE wrapper
    #   params        parameters for this model, in this case beta and gamma
    #
    #Output:
    #   Y             vector of state variable equations for S, I, and R
    ###########################

Y = np.zeros(3) #column vector for the state variables
X = ini
mu = 0
beta = params[0]
gamma = params[1]

Y[0] = mu - beta*X[0]*X[1] - mu*X[0]         
Y[1] = beta*X[0]*X[1] - gamma*X[1] - mu*X[1] 
Y[2] = gamma*X[1] - mu*X[2]                  

return Y

def x0fcn(params, data):
    #Set initial conditions
    
    ###########################
    #Input:
    #   data          true data to be fit
    #   params        parameters for this mode, in this case beta, gamma, and kappainv
    #
    #Output:
    #   X0            initial conditions for the SIR ODE          
    ###########################

S0 = 1.0 - (data[0]/params[2]) 
I0 = data[0]/params[2]         
R0 = 0.0                       
X0 = [S0, I0, R0]

return X0

def yfcn(res, params):
    #Define measurement equation
    
    ###########################
    #Input:
    #   res           simulated data results
    #   params        parameters for this mode, in this case beta, gamma, and kappainv
    #
    #Output:
    #   simulated reported data 
    ###########################

return res[:,1]*params[2]

def NLL(params, data, times): 
    #Define the negative log likelihood
    
    ###########################
    #Input:
    #   params        parameters for this mode, in this case beta, gamma, and kappainv
    #   data          true data to be fit
    #   times         time points when the true data is recorded
    #
    #Output:
    #   nll           negative log likelihood estimate    
    ###########################

params = np.abs(params)
data = np.array(data)

    
    #Simulate the model with current parameters

res = ode(model, x0fcn(params,data), times, args=(params,))
    
    #Apply the measurement equation

y = yfcn(res, params)
    
    #Calculate the NLL for Poisson distribution

nll = sum(y) - sum(data*np.log(y))   #(****remove for sandbox version of code****)
    

# note this is a slightly shortened version--there's an additive constant term missing but it 
# makes calculation faster and won't alter the threshold. Alternatively, can do:
# nll = -sum(np.log(poisson.pmf(np.round(data),np.round(y)))) # the round is b/c Poisson is for (integer) count 
# data this can also barf if data and y are too far apart because the dpois will be ~0, which makes the log 

    # angry

# ML using normally distributed measurement error (least squares)
# nll = -sum(np.log(norm.pdf(data,y,0.1*np.mean(data)))) # example WLS assuming sigma = 0.1*mean(data)
# nll = sum((y - data)**2)  # alternatively can do OLS but note this will mess with the thresholds 
#                             for the profile! This version of OLS is off by a scaling factor from
#                             actual LL units.
return nll

In [16]: #### Load Data ####
times = [0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]
data = [97, 271, 860, 1995, 4419, 6549, 6321, 4763, 2571, 1385, 615, 302, 159, 72, 34]

#### Define our parameter set ####
params = [0.4, 0.25, 80000.0]        #make sure all the params and inition states are float
paramnames = ['beta', 'gamma', 'k']

#### Simulate the model ####
ini = x0fcn(params,data)
res = ode(model, ini, times, args=(params,))
sim_measure = yfcn(res, params)

#### Plot the data and simulation ####
plt.plot(times, sim_measure, 'b-', linewidth=3, label='Model simulation')
plt.plot(times, data, 'ko', linewidth=2, label='Data')
plt.xlabel('Time')
plt.ylabel('Individuals')
plt.legend()
plt.show()

In [67]: #### Choose an optimizer and estimate parameter values ####
optimizer = optimize.minimize(NLL, params, args=(data, times), method='Nelder-Mead')
paramests = np.abs(optimizer.x)

#### Re-generate initial case data based on new parameter estimates
iniests = x0fcn(paramests, data)      

#### Re-simulate and plot the model with the final parameter estimates ####
#Simulate data
xest = ode(model, iniests, times, args=(paramests,))    
#Apply the measurement equation
est_measure = yfcn(xest, paramests)                     

#Plot
plt.plot(times, est_measure, 'b-', linewidth=3, label='Model simulation')
plt.plot(times, data, 'ko', linewidth=2, label='Data')
plt.xlabel('Time')
plt.ylabel('Individuals')
plt.legend()
plt.show()

print('The parameter estimates are beta = {params[0]:.4}, gamma = {params[1]:.4}, and kappa = {params[2]}'.format(params=paramests))
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In [9]: # Simplified FIM (Fisher information matirx) function for the SIR model
# Marisa Eisenberg (marisae@umich.edu)
# Yu-Han Kao (kaoyh@umich.edu) -7-9-17

def minifisher (times, params, data, delta = 0.001):
    #Calculate the FIM for the SIR model.
    
    ###########################
    #Input:
    #   times         time points when the true data is collected
    #   params        parameters for this mode, in this case beta, gamma, and kappainv
    #   data          true data to be fit
    #   delta         fit parameter for FIM; preset to 0.001, but can be set by user
    #
    #Output:
    #   simulated reported data 
    ###########################

#params = np.array(params)
listX = []
params_1 = np.array (params)
params_2 = np.array (params)
for i in range(len(params)):

params_1[i] = params[i] * (1+delta)
params_2[i]= params[i] * (1-delta)

res_1 = ode(model, x0fcn(params_1,data), times, args=(params_1,))
res_2 = ode(model, x0fcn(params_2,data), times, args=(params_2,))
subX = (yfcn(res_1, params_1) - yfcn(res_2, params_2)) / (2 * delta * params[i])
listX.append(subX.tolist())

X = np.matrix(listX)
FIM = np.dot(X, X.transpose())
return FIM

M ∈ iFisher

In [13]: #### Calculate the simplified Fisher Information Matrix (FIM) ####
FIM = minifisher(times, params, data, delta = 0.001)       #(****remove for sandbox version of code****)
print(FIM)                                                 #(****remove for sandbox version of code****)

pr∫
pr∫(FIM)

In [14]: #### Calculate rank of FIM ####
print(np.linalg.matrix_rank(FIM))     #(****remove for sandbox version of code****)
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In [44]: # Define the ranges for each parameter, and make an empty matrix for the likelihood values
betarange = np.arange(0.35,0.45,0.01)                      #(****remove for sandbox version of code****)
kapparange = np.arange(1e-05,2e-05,1e-6)**(-1)          #(****remove for sandbox version of code****)
likevals = np.zeros((len(betarange),len(kapparange)))   #(****remove for sandbox version of code****)

print(betarange)
print(kapparange)

In [52]: # Go through each point on the contour plot and calculate the likelihood value at those coordinates
for i in range(len(betarange)):
    for j in range(len(kapparange)):
        likevals[i,j] = NLL([betarange[i],0.25,kappainvrange[j]], data, times) #NLL(params, data, times)
        
print(np.min(likevals))
print(np.max(likevals))

β γ

γ

In [53]: #### Make a contour plot! #####
plt.contourf(betarange, kapparange, likevals)
plt.xlabel('Beta Range')
plt.ylabel('Kappa Range')
plt.colorbar()
plt.show()

In [147… # Profile Likelihood Generator
# Marisa Eisenberg (marisae@umich.edu)
# Yu-Han Kao (kaoyh@umich.edu) -7-9-17

def profcost (fit_params, profparam, profindex, data, times, cost_func):
paramstest = fit_params.tolist()
paramstest.insert(profindex, profparam)
return cost_func (paramstest, data, times)

# Input definitions
# params = starting parameters (all, including the one to be profiled)
# profparam = index within params for the parameter to be profiled
#   ---reminder to make this allow you to pass the name instead later on
# costfun = cost function for the model - should include params, times, and data as arguments.
#   Note costfun doesn't need to be specially set up for fixing the profiled parameter, 
#   it's just the regular function you would use to estimate all the parameters
#   (it will get reworked to fix one of them inside ProfLike)
# times, data = data set (times & values, or whatever makes sense)
#   ---possibly change this so it's included in costfun and not a separate set of inputs? Hmm.
# perrange = the percent/fraction range to profile the parameter over (default is 0.5)
# numpoints = number of points to profile at in each direction (default is 10)

# Output
# A list with:
#   - profparvals: the values of the profiled parameter that were used
#   - fnvals: the cost function value at each profiled parameter value
#   - convergence: the convergence value at each profiled parameter value
#   - paramestvals: the estimates of the other parameters at each profiled parameter value

def proflike (params, profindex, cost_func, times, data, perrange = 0.5, numpoints = 10):
profrangedown = np.linspace(params[profindex], params[profindex] * (1 - perrange), numpoints).tolist()
profrangeup = np.linspace(params[profindex], params[profindex] * (1 + perrange), numpoints).tolist()[1:] #skip the duplicated values
profrange = [profrangedown, profrangeup]
currvals = []
currparams = []
currflags = []

fit_params = params.tolist() #make a copy of params so we won't change the origianl list
fit_params.pop(profindex)
print('Starting profile...')
for i in range(len(profrange)):

for j in profrange[i]:
#print(i, j)
optimizer = optimize.minimize(profcost, fit_params, args=(j, profindex, data, times, cost_func), method='Nelder-Mead'
fit_params = np.abs(optimizer.x).tolist() #save current fitted params as starting values for next round
#print(optimizer.fun)
currvals.append(optimizer.fun)
currflags.append(optimizer.success)
currparams.append(np.abs(optimizer.x).tolist())

#structure the return output
profrangedown.reverse()
out_profparam = profrangedown+profrangeup
temp_ind = range(len(profrangedown))
out_params = [currparams[i] for i in reversed(temp_ind)]+currparams[len(profrangedown):]
out_fvals = [currvals[i] for i in reversed(temp_ind)]+currvals[len(profrangedown):]
out_flags = [currflags[i] for i in reversed(temp_ind)]+currflags[len(profrangedown):]
output = {'profparam': out_profparam, 'fitparam': np.array(out_params), 'fcnvals': out_fvals, 'convergence': out_flags}
return output

2(NLL(p) − NLL(p̂))
χ2

p p th χ2

β, γ κ χ2 th

p

NLL(p) ≤ NLL(p̂) + 7.8147/2
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In [148… #### Generate profile likelihoods and confidence bounds ####
import scipy.stats as stats

threshold = stats.chi2.ppf(0.95,len(paramests))/2.0 + optimizer.fun
perrange = 0.25 #percent range for profile to run across

In [150… #### Plot the individual parameter profiles ####

profiles={}
for i in range(len(paramests)):

profiles[paramnames[i]] = proflike(paramests, i, NLL, times, data, perrange=perrange)
print('Profiles have been generated.')
plt.figure()
plt.scatter(paramests[i], optimizer.fun, marker='*',label='True value', color='k',s=150, facecolors='w', edgecolors='k')
plt.plot(profiles[paramnames[i]]['profparam'], profiles[paramnames[i]]['fcnvals'], 'k-', linewidth=2, label='Profile likelihood'
plt.axhline(y=threshold, ls='--',linewidth=1.0, label='Threshold', color='k')
plt.xlabel(paramnames[i])
plt.ylabel('Negative log likelihood')
plt.legend(scatterpoints = 1)
paramnames_fit = [ n for n in paramnames if n not in [paramnames[i]]]
paramests_fit = [v for v in paramests if v not in [paramests[i]]]
print(paramnames_fit)
print(paramests_fit)

    
#print(profiles)
plt.show()

In [152… #### Plot the parameter relationships ####

profiles={}
for i in range(len(paramests)):

profiles[paramnames[i]] = proflike(paramests, i, NLL, times, data, perrange=perrange)
print('Profiles have been generated.')
paramnames_fit = [ n for n in paramnames if n not in [paramnames[i]]]
paramests_fit = [v for v in paramests if v not in [paramests[i]]]
for j in range(profiles[paramnames[i]]['fitparam'].shape[1]):

plt.figure()
plt.plot(profiles[paramnames[i]]['profparam'],profiles[paramnames[i]]['fitparam'][:,j],'k-', linewidth=2, label=paramnames_fit
plt.scatter(paramests[i], paramests_fit[j], marker='*',label='True value', color='k',s=150, facecolors='w', edgecolors='k'
plt.xlabel(paramnames[i])
plt.ylabel(paramnames_fit[j])
plt.legend(scatterpoints = 1)

#print(profiles)
plt.show()

In [ ]:  

 

https://epimath.org/epid-814-materials/Labs/EstimationLab/
https://epimath.org/epid-814-materials/Labs/IdentifiabilityUncertainty/IdentifiablilityUncertaintyLab.html
http://www.nimbios.org/wordpress-training/parameter/wp-content/uploads/sites/14/2014/03/ols_sir_lecture.pdf

