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Abstract

Using data for Ceará, Brazil, we construct a polynomial distributed lag model under dif-

ferent truncation lag criteria to predict reported dengue cases. Accurately predicting dengue

cases provides the framework to develop forecasting models, which would provide public health

professionals time to create targeted interventions for areas at high risk of dengue outbreaks.

Others have shown that variables of interest such as temperature and vegetation can be used

to predict dengue cases. These models did not detail how truncation lag criteria was chosen for

their respective models when polynomial distributed lag was used. We explore current trunca-

tion lag selection methods used widely in the literature (simple, marginal, and minimized AIC)

and determine which of these methods works best for our given dataset. While minimized AIC

truncation lag selection produced the best fit to our data (Adjusted R2=0.9996), this method

used substantially more data to inform its prediction and resulted in a 21.46% increase in the

Adjusted R2 compared to the marginal truncation lag selection method (Adjusted R2=0.7298).

Finally, the following variables were found to be significant predictors of dengue in this region:

mean normalized difference vegetation index, percent cloudy pixels, and Google Health Trends

data.
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1 Background

Dengue cases are on the rise in Ceará, Brazil. Creating disease control programs to help prevent

dengue are dependent on our understanding of the mechanisms involved with dengue transmission,

and the region at risk.

1.1 Dengue in Ceará, Brazil

Mosquito born diseases are a major burden to public health, accounting for more than 17% of all

infectious disease cases globally.[30] Approximately 40% of the world is at risk for dengue infection,

with that burden even higher in endemic regions of Africa, Asia, and the Americas.[10, 14] Dengue

virus in particular is a leading cause of death in tropical zones, such as Brazil.

Dengue virus originated in Africa or Southeast Asia and was geographically restricted until the

mid-20th century. Cargo shipments during and after World War II are suspected to be the cause

of the global spread of Aedes mosquitos around the world, as well as the diseases they carry.[6, 14]

In 1967, Aedes aegypti, the main vector for dengue, was introduced to Brazil, and Brazil responded

quickly by launching Aedes mosquito control programs. Despite these efforts, the mosquito spread

rapidly across Brazil. By 1998, over half a million dengue cases were reported annually in Brazil

and more than 1.5 million cases annually are reported today. [7, 13, 14]

The majority of all dengue cases in Brazil are reported in the Southeast and Northeast regions.[6]

Ceará is a state in the Northeast region of Brazil. Dengue was introduced to Ceará in the mid

1980s[6, 13], with the first major outbreak reported in 1986. Since this time, there have been annual

outbreaks of dengue in Ceará. In 1994, Ceará alone was responsible for 84% of all reported dengue

cases, with the majority of these cases being reported in the city of Fortaleza.[7] Compared to

dengue epidemics in the 1980s where fewer than a hundred cases a year were reported in Ceará, we

are now seeing no less than a thousand cases or more each year. [13] Figure 1 shows the reported

case data by state for the Northeast region of Brazil, in which Ceará is included, by epidemic week,

from January 3, 2010 to the week of July 3, 2016. We can observe that Ceará often has one of the

highest disease burdens of all states in this region in any given year, with an average reported case

count of a over 1,000 per year.

Figure 2 shows the reported case data by mesoregion for Ceará for the same time span of

epidemic weeks. We can observe from the raw data that the majority of the disease burden is

in the mesoregion cluster Metropolitana de Fortaleza, or the City of Fortaleza for any given year,

indicating a high disease burden in urban areas and heterogeneity of disease burden in this region.

As the number of dengue cases in Ceará and across Brazil continues to rise, it is important to

create new innovative tools for informing disease control. We will discuss prediction methods which

can inform disease control specialists on future cases of dengue.
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Figure 1: Left: The raw weekly case data for Ceará, Brazil, (in royal blue) compared to other states in the Northeast region of

Brazil for January 2010 through July 2016. Right: Map of the Northeast region of Brazil, color code for each state matching the

raw case data shown at left. The raw reported case data was provided by the Ministério da Saúde, also known as the Ministry

of Health of Brazil.
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Figure 2: Left: The raw weekly case data for Ceará, Brazil, by mesoregion clusters of municipalities for January 2010 through

July 2016 (7 geopolitical clusters of the 44 municipalities). Mesoregions are geopolitical clusters of municipalities, grouped

by proximity and common characteristics by the Instituto Brasileiro de Geografia e Estat́ıstica in 1999 for statistical analysis

purposes.[28] The raw reported case data was provided by the Ministry of Health of Brazil. Right: Map of Ceará, Brazil, color

coded for each mesoregion matching the raw case data shown at left.
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1.2 Transmission Dynamics of Dengue

In order to create targeted, successful intervention campaigns for dengue in Brazil, it is important to

understand the underlying dynamics of the disease. In this section, we will review what dengue is,

the transmission pathway of dengue, the life cycle of A. aegypti, and available intervention measures.

Dengue virus is transmitted via the bite of a mosquito to a human. Mosquitos of the Aedes

family are the main vector for dengue, with A. aegypti responsible for the majority of all dengue

transmission.[6, 10, 14] Typically, symptoms of dengue fever develop 5 days after infection [10, 14]

and can last up to 10 days. During this time, there is a 5-day period where the viral load is high

enough for humans to transmit dengue virus to a mosquito via a bite. Most cases are asymptomatic
[14, 31], but symptoms include undifferentiated febrile illness (viral syndrome), dengue fever (DF),

dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). It is important to note that

dengue infections are most likely higher than reported, with an estimated 15% reporting rate in

1999,[22] which may be due in part to the large number of asymptomatic cases of dengue driving a

silent epidemic.[14, 31] The global burden of dengue is far worse than is currently assumed.

Vaccines are in development for dengue, but as of yet do not have widespread use. This is

due in large part to issues arising from interactions between dengue serotypes. There are four

major serotypes of denuge (DENV-1, DENV-2, DENV-3, and DENV-4), all of which are found in

Brazil.[32] Certain combinations of these serotypes can increase or decrease risk of dengue hem-

orrhagic fever,[35] complicating treatment and development of vaccines, which must take this into

consideration.

Transmission of dengue by mosquitos generally follow this pathway [10, 14]:

• An infected mosquito bites an uninfected (susceptible) human

• The virus multiplies in the blood over the course of 4 days

• A susceptible mosquito bites the now infected human (5-12 days since first infection of human)

• The pathogen develops in the gut of the mosquito over 8-12 days (extrinsic incubation period)

• The mosquito is now infected and the cycle repeats

Infected mosquitos can continue to transmit dengue virus for the duration of their lifetime,

usually 3-4 weeks. This cycle assumes that there are adult mosquitos to participate in the trans-

mission pathway. Therefore, the disease burden on humans is correlated to the abundance of adult

mosquitos.

Abundance of A. aegypti depends on their breeding habits: mosquitos lay their eggs into con-

tainers with water, where they can remain for months, and eggs hatch after a rain or flooding.

Larvae develop into pupa within a week, and into adult mosquitos within another two days. This

process takes 8-10 days at room temperature.[14] From Figures 1 and 2, we can see there is a peak
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in dengue cases by April in Brazil of each year, though the magnitude of the peak varies year to

year. This is a general seasonal trend across Brazil, which corresponds to the rainy season and

warmer spring temperatures.[6, 14, 24]

Upon understanding the life cycle of the mosquito, we can identify multiple influencing factors

that effect the development of the mosquito, therefore abundance of dengue cases. Influencing

factors include the following:

• Urban Environment: For the eggs to be laid, there need to be suitable containers for

breeding. The vector itself prefers urban environments for breeding, which also enhances

the spread of the virus.[6, 10, 14] Urban environments offer close contact with a blood source

(humans) and easy breeding grounds. This tendency lends to the geographic heterogeneity

that can be observed in the reported dengue cases. As seen in Figure 2, the mesoregion

containing Fortaleza, the major city of Ceará, reported the most dengue cases in any given

year.

• Water Sources/Rainfall: Eggs hatch after there has been rain or flooding, and therefore

are sensitive to events involving water. The amount of rainfall is a known indicator of dengue

prevalence.[14, 29]

• Temperature: The developmental and reproductive cycles of A. aegypti are sensitive to

temperature variation, which is what results to the overall seasonal variance of dengue that

is observed on a macro level. [6, 14] Higher temperatures reduce the time it takes for dengue

virus to develop in the gut of the mosquito, increasing the infectious period of the mosquito.[14]

• Vegetation: Male and female mosquitos feed on plant nectars, fruit juices, and other plants

sugars as their main energy source, making vegetation another factor important to their

survival. [10] Abundance of vegetation depends on factors such as rainfall, temperature, and

humidity.

In the absence of a reliable vaccine, public health professionals have focused on vector control

measures to reduce dengue incidence. Vector control measures take advantage of the mosquito life

cycle. For example, larval fish target the larval stage of mosquito development, while insecticide

sprays target adult mosquitos. Education on mosquito breeding grounds have also been used to try

to reduce mosquito abundance in urban areas. [14] But such measures require time and expensive

resources to implement. Figures 1 and 2 show that the disease burden of dengue in Brazil is highly

heterogeneous geographically and changes year to year. To reduce costs and increase effectiveness,

control programs should be more targeted to specific areas of high risk.
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2 Introduction

Upon understanding some of the factors of the life cycle of A. aegypti outlined in Section 1.2,

we can see that mosquito abundance is dependent on multiple factors: access to standing water,

temperature, urbanization, vegetation, and rainfall. All of these variables effect the development

of the mosquito from egg to larvae to adult. There is a time delay from weather factors to in-

creased mosquito abundance, and therefore from weather factors to increased risk of infection from

mosquitos.

We will use polynomial distributed lag models to forecast risk of dengue cases in Ceará, Brazil,

using the following predictor variables described in Section 2.1.

2.1 Variables with Delayed Effect on Mosquitos

Since we are focusing on dengue transmission in Brazil, we will consider the life cycle of A. aegypti

specifically. This mosquito thrives in tropical and subtropical regions where the winter is no colder

than 10◦C. This is due to the fact that their reproductive cycle is highly dependent on temperature,

as previously mentioned in Section 1.2. [6, 10, 14] This and other factors were outlined in detail in

Section 1.2. We want to look at data that describes these effects as predictors for dengue caseloads.

Satellite indices data were provided by the Descartes Labs, and a description of this data in

Table 1. For NDVI, Green NDWI, SWIR NDWI, and NBR, the maximum, mean, and minimum

value collected each epidemic week was reported. Percent cloudy pixels were collected to account

for weeks when the indices could not be collected due to cloud cover. This may be an indicator of

rainy seasons or fog. It is unclear from the data. When the satellite data is sampled at a higher

frequency than once per week, the average value for each epidemic week is reported. Data was

recorded from January 3, 2010 to the week of July 3, 2016 to match reported case data, provided

by the Ministry of Health of Brazil. Reported case data does not include serotype information for

a municipality or state level.

Index Name Abr. Formula Description

Normalized Difference Vegetation NDVI NIR−Red
NIR+Red

Indicator of healthy, green vegetation

Normalized Difference Water (Green) Green NDWI Green−NIR
Green+NIR

Indicator of water content in leaves

Normalized Difference Water (SWIR) SWIR NDWI NIR−SWIR1

NIR+SWIR1
Indicator of water content in water bodies

Normalized Burn Ratio NBR SWIR1−SWIR2

SWIR1−SWIR2
Indicator of burned areas and fire severity

Percent Cloudy Pixels – – Percent of total pixels covered by clouds

Table 1: Table with description of satellite indices provided by Descartes Lab database. Green, red,

near infrared (NIR), and short wave infrared (SWIR) refer to spectral reflectance measurements of

wavelengths used in the calculations.

Additionally, temperature and relative humidity data was collected from National Oceanic and
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Atmospheric Administration (NOAA). Data was averaged across space and time such that maxi-

mum, mean, and minimum temperature and relative humidity, reported weekly at a municipality

level for Ceará. Google Health Trends data for the state of Ceará was also included as a possible

predictor. Google Health Trends data used in this analysis was for the relative number of searches

by state for the term “dengue.”

The following variables of interest were considered as possible predictors of future dengue cases:

Maximum, mean, and minimum NDVI; Maximum, mean, and minimum Green NDWI; Maximum,

and minimum SWIR NDWI; Maximum, mean, and minimum NBR; Maximum, mean, and minimum

temperatures in Celsius; Relative humidity; Percent cloudy pixels; Google Health Trends data.

Mean SWIR NDWI is missing from the data sets that were provided to the author. Summary

statistics for the data used in this analysis is shown in Table 2.

The data is provided at a municipality level scale. There were 5564 municipalities in Brazil at

the start of this data set in 2010, with these organized into 136 mesoregions within 27 states. The

state of Ceará has 7 mesoregions which contain 184 municipalities.

Variable N Mean Std Dev Min. Max.

Reported Dengue Cases 344 886.0581395 1084.53 61 6754

Max NDVI 344 0.0047152 0.00036208 0.0032693 0.0054419

Mean NDVI 344 0.0013696 0.000141389 0.000839939 0.0019117

Min NDVI 344 -0.0047575 0.0014459 -0.0067328 -0.0015583

Max Green NDWI 344 0.0048181 0.0014178 0.0016656 0.0067616

Mean Green NDWI 344 -0.0011883 0.000143239 -0.0016603 -0.000678846

Min Green NDWI 344 -0.0042328 0.000294099 -0.0048271 -0.002906

Max SWIR NDWI 344 0.0058034 0.000416952 0.0044158 0.0070395

Min SWIR NDWI 344 -0.0030609 0.0012145 -0.0054567 -0.000539747

Max NBR 344 0.005248 0.000955511 0.0033392 0.0068565

Mean NBR 344 0.0011671 0.0002766 -0.000305496 0.0015328

Min NBR 344 -0.0035686 0.0013242 -0.005861 -0.000699305

Percent cloudy pixels 344 0.3279851 0.1213258 0.0715466 0.6041456

Relative humidity 344 0.5329018 0.0429924 0.4382377 0.6041358

Max temperature 344 0.2269754 0.0082925 0.2080857 0.2454742

Mean temperature 344 0.1941354 0.0062933 0.1784672 0.2102962

Min Temperature 344 0.1568894 0.0181173 0.0994845 0.1729983

Google Health Trends 344 2540.45 2148.93 314.6121608 12358.35

Table 2: Table with summary statistics for all variables.
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2.2 Distributed Lag Models

All our data is presented in a time series format. In statistics and economics, distributed lag models

are used for analysis of time series data. Distributed lag models assume that the effect of a predictor

x on an output y occurs over an interval of time, t ∈ [0,−L], rather than all at once. In other

words, the output y depends on the effect of x at time t, t − 1, . . . , t − l, . . . , t − L, where L is the

truncation lag time. We can write this model as the following:

Y (t) = c0 + β0x(t) + β1x(t− 1) + · · ·+ βlx(t− l) + . . . βLx(t− L) (1)

= c0 +
L∑
l=0

βlx(t− l) (2)

Traditionally, this could be considering the delayed effect of new income taxes on the income of

suppliers or of a new policy on the economy.[19] In terms of health, we can consider more generally

the delayed effect of an exposure on a given response. For example, the effect of particulate matter

air pollution to lung health [34] for environmental health, the effect of Gross National Product

(GNP) to health [16] for health policy, and the effect of climate on mosquitos [8, 21] for vector born

diseases.

We will focus on polynomial distributed lag models, which were first proposed by Shirley Almon

in 1965.[3] Consider for example x(t) and x(t−1) of Equation 1. Since these variables are correlated,

their coefficients β0 and β1 are also correlated, leading to issues with multicollinearity. This can

lead to two issues: (a) if the model is identifiable, the covariance matrix of the estimated coefficients

βl may be nearly singular leading to numerical problems and (b) since there are L + 2 coefficients

to estimate, the degrees of freedom will quickly be exhausted. So, we instead assume that all the βl

follow some continuous function such that βl = f(l). For polynomial distributed lag, we construct

f(l) as some polynomial function of at most degree D in lag length l. Using Equation 2, we can

now write[17]:

βl =f(l) = α0 + α1l + · · ·+ αDl
D =

D∑
d=0

αdl
d for all l. (3)

Y (t) =c0 +
L∑
l=0

f(l)x(t− l) =c0 +
L∑
l=0

D∑
d=0

αdl
dx(t− l) . (4)

Since βl is now determined by a polynomial function, we have resolved our issues: (a) The

covariance matrix of the βl is no longer nearly singular and (b) Now there are only D+2 coefficients

to estimate instead of L + 2. We can limit the size of D such that we do not exhaust our degrees

of freedom.

We can further simplify the problem by setting sd =
∑L

l=0 l
dx(t− l), and rewrite Y (t) to find:

Y (t) =c0 + α0s0 + α1s1 + · · ·+ αDsD =c0 +
D∑

d=0

αdsd . (5)
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From here, we can solve the linear system for αd to reconstruct βl. Since there may still be issues

with correlation among the new coefficients αd, we choose our polynomial basis functions f(l) such

that they are orthogonal. Rather, od(l) is some orthogonal polynomial of degree d in lag length

l, such that sd =
∑L

l=0 od(l)x(t− l). [20] Orthogonal polynomials can be constructed using the

methodology laid out by Emerson et al. as follows: [12, 20]

n∑
i=1

wioj(i)ok(i) =

1 if j = k

0 if j 6= k
, (6)

where wi is a weighting factor, n = d + 1, and oj(i) is the jth degree of the orthogonal polynomial

in lag length i.

2.3 Objectives

We will apply a polynomial distributed lag model to the data provided for Ceará, Brazil, under

various truncation lag selection criteria. In particular, we will analyze the prediction capabilities of

each of the variables of interest described in Section 2.1, identifying which contribute most to the

risk of dengue.

3 Methodology

As described in Section 2.1, we were provided with the data sets for 17 different predictor variables

of interest at a municipality level for Ceará and the reported number of dengue cases. Since we

want to do analysis for the state-level of Ceará, we aggregated the data to the state level after

weighting for geographic scale. The data used in this analysis contains the average value for each

predictor for each epidemic week from January 3, 2010 to July 3, 2016 (344 epidemic weeks) only

for the state-level of Ceará. No mesoregion level or municipality level information was considered

in this analysis. Summary statistics for this data can be found in Table 2.

Previous distributed lag models for mosquito borne diseases do not provide an explanation on

how the truncation lag time L is selected, or how the degree of the polynomial D is selected. We

will analyze 3 different methods for selecting the truncation lag time, L, and set the degree of the

polynomial such that D = 8 since this has been used before in the literature. [8]

We will consider a few methods for selecting the truncation lag time L of the polynomial dis-

tributed lag model, summarized here:

• Simple lag selection: All variables have a truncation lag time of 9 weeks, or about 2

months. This is the minimum number of weeks that must be provided to create an 8th degree

polynomial.
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• Marginal lag selection: All variables have a custom truncation lag time depending on when

the marginal lag coefficient becomes statistically insignificant for α = 0.05 T test. [1, 3, 5, 25]

• Minimized AIC lag selection: All variables have a custom truncation lag time depending

on when the Akaike’s Information Criteria (AIC) score is minimized for our given dataset.
[1, 3, 5]

For the marginal lag selection, we select progressively higher truncation lag times starting with

L = 9 as our minimum acceptable truncation lag time until the marginal βL coefficient is statistically

insignificant based on a T-test with α = 0.05. To ensure that at least one βl coefficient is statistically

significant, we first allow truncation times to increase until at least one βl coefficient is statistically

significant then continue to increase the truncation lag time until the marginal βL coefficient is

statistically insignificant. We repeat this analysis for all variables to find the best truncation lag

time. The SAS code for minimizing the AIC score can be found in Section 8.3.

For the minimized AIC lag selection, we select progressively higher truncation lag times starting

with L = 9 as our minimum acceptable truncation lag time until the AIC score is minimized for

our time set, with a maximum possible truncation lag of L = 343 since we have 344 weeks in our

dataset. The SAS code for minimizing the AIC score can be found in Section 8.4.

All polynomial distributed lag analysis was performed in SAS to provide robust analysis, AIC

statistics, t-tests for the β coefficients, and other outputs. All models were run with D = 8 degrees

of freedom for the polynomial defining the coefficient of each variable. It is also important to note

that SAS assumes a weighting factor of wi = 1 when constructing orthogonal polynomials in Proc

PDLREG.[20] The code related to this process can be found in Section 8.2.

After selecting our truncation lag times, we construct univariate polynomial distributed lag

models for each of the variables of interest. For each of these models we calculate Total R2, a

measure of the amount of variance in output variable y explained by the variable of interest, x.

Based on the Total R2, we will select the best 8 predictors for each selection criteria and build a

multivariable model such that

Y (t) = c0 +
8∑
i

L∑
l=0

D∑
d=0

αdl
dxi(t− l) .

To compare these models, we again look at the Total R2. The Total R2 is not a good measure to

compare however because the value of Total R2 always increases as more parameters are included

in a model. Instead we should use the Adjusted R2 value to compare between groups.

R2
adj = 1− (1−R2)(N − 1)

N − p− 1
,

where N is the total number of observations and p is the number of parameters estimated by the

model. The Mean Square Error (MSE) for each model is also recorded, as this is sometimes used

as a selection criteria in place of the AIC score.

12



4 Results

In this section, we present the results, using the methodology described in Section 3. Please note

that the t-tests for the β coefficients used for the marginal lag selection procedure are not shown in

this paper.

Summarized in Table 3, Table 4, and Table 5 are the summary results for univariate analysis.

We can use the univariate analysis to select the variables of interest that appear to contribute the

most to predicting dengue cases in Ceará.

For the simple lag selection criteria (Table 3), the following 8 variables account for most of

the variation in dengue cases: mean NDVI, mean Green NDWI, percent cloudy pixels, relative

humidity, maximum temperature, mean temperature, minimum temperature, and Google Health

Trends. For the marginal lag selection criteria (Table 4), the following 8 variables account for most

of the variation in dengue cases: maximum NDVI, mean NDVI, mean Green NDWI, percent cloudy

pixels, relative humidity, maximum temperature, mean temperature, and Google Health Trends.

For the minimized AIC lag selection criteria (Table 5), the following 8 variables account for most

of the variation in dengue cases: mean NDVI, minimum NDVI, minimum Green NDWI, minimum

SWIR NDWI, maximum NBR, mean NBR, minimum NBR, percent cloudy pixels, and Google

Health Trends. These results are summarized in Table 6.

Using the variables that contribute the most information, we build multivariable models for

predicting dengue cases for each of the three truncation lag criteria. Each multivariable model

contains the top 8 predictor variables for each of the three truncation lag criteria. These models

have Total R2 values of 0.6329, 0.8441, and 0.9996 for the simple, marginal, and minimized AIC

selection criteria respectively. To calculate the Adjusted R2, we use N = 344 and p = 1 + 5m = 41,

given m = 8 variables of interest in the model. Therefore, the Adjusted R2 values for each of the

models are 0.5831, 0.8229, and 0.9995 for the simple, marginal, and minimized AIC selection criteria

respectively. We find that the minimized AIC truncation lag selection yields the best prediction

model.
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Variable Trunc. Lag AIC MSE Total R2 Top 8 Predictors

Max NDVI 9 56486 1196693 0.0280

Mean NDVI 9 5602.72509 1042653 0.1531 *

Min NDVI 9 5656.01352 1222428 0.0071

Max Green NDWI 9 5656.0773 1222660 0.0069

Mean Green NDWI 9 5609.27173 1063229 0.1364 *

Min Green NDWI 9 5652.58196 1209970 0.0172

Max SWIR NDWI 9 5632.64173 1140050 0.0740

Min SWIR NDWI 9 5652.87109 1211014 0.0164

Max NBR 9 5654.76983 1217898 0.0108

Mean NBR 9 5650.76026 1203408 0.0225

Min NBR 9 5651.71766 1206888 0.0197

Percent cloudy pixels 9 5500.96624 769519 0.3750 *

Relative humidity 9 5508.04866 785961 0.3616 *

Max temperature 9 5518.25164 810268 0.3419 *

Mean temperature 9 5549.6948 890003 0.2771 *

Min Temperature 9 5623.74816 1110182 0.0983 *

Google Health Trends 9 5524.56899 825692 0.3293 *

Table 3: Table with output from SAS Proc PDLREG using simple lag selection for all variables of

interest.
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Variable Trunc. Lag AIC MSE Total R2 Top 8 Predictors

Max NDVI 34 5189.72066 1057514 0.1935 *

Mean NDVI 29 5176.52079 777852 0.3996 *

Min NDVI 32 5267.45823 1218920 0.0660

Max Green NDWI 32 5268.45477 1222819 0.0631

Mean Green NDWI 28 5186.58308 762400 0.4100 *

Min Green NDWI 34 5203.63104 1106047 0.1565

Max SWIR NDWI 26 5342.89357 1124370 0.1254

Min SWIR NDWI 22 5414.02303 1138584 0.1050

Max NBR 41 5094.05975 1134559 0.1497

Mean NBR 26 5376.22542 1248621 0.0287

Min NBR 28 5358.56841 1166632 0.0971

Percent cloudy pixels 23 5253.26275 727064 0.4300 *

Relative humidity 21 5284.23871 723261 0.4299 *

Max temperature 25 5185.44743 651217 0.4922 *

Mean temperature 17 5408.74143 866756 0.3093 *

Min Temperature 35 5197.03646 1143019 0.1303

Google Health Trends 13 5448.90084 801559 0.3551 *

Table 4: Table with output from SAS Proc PDLREG using marginal lag selection for all variables

of interest. T-test for marginal βL coefficient was done for α = 0.05.
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Variable Trunc. Lag AIC MSE Total R2 Top 8 Predictors

Max NDVI 127 3292.33084 204076 0.7554

Mean NDVI 190 2309.76637 179490 0.8330 *

Min NDVI 196 2214.2396 172478 0.8448 *

Max Green NDWI 197 2219.35809 197638 0.8228

Mean Green NDWI 190 2316.32149 187295 0.8266

Min Green NDWI 127 3269.23168 195383 0.7659

Max SWIR NDWI 150 2911.39525 183349 0.7934

Min SWIR NDWI 276 990.430203 108252 0.9424 *

Max NBR 275 993.369358 91628 0.951 *

Mean NBR 276 988.821444 105721 0.9437 *

Min NBR 194 2223.91416 150825 0.8632 *

Percent cloudy pixels 275 997.108919 96731 0.9483 *

Relative humidity 275 990.268283 87601 0.9531

Max temperature 198 2239.04167 250694 0.776

Mean temperature 196 2254.01681 225661 0.797

Min temperature 159 2791.91279 198705 0.7801

Google Health Trends 272 997.774975 53737 0.97 *

Table 5: Table with output from SAS Proc PDLREG using minimized AIC lag selection for all

variables of interest.
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Variable Simple Marginal Minimized AIC

Max NDVI *

Mean NDVI * * *

Min NDVI *

Max Green NDWI

Mean Green NDWI * *

Min Green NDWI *

Max SWIR NDWI

Min SWIR NDWI *

Max NBR *

Mean NBR *

Min NBR

Percent cloudy pixels * * *

Relative humidity * *

Max Temp. * *

Mean Temp. * *

Min Temp. *

Google Health Trends * * *

Table 6: Summary of top 8 variables found to be significant for each of the truncation lag selection

cases. The * indicates the variable was found to be significant for the given truncation lag selection

case.

5 Discussion

First, we analyze which selection type for the truncation lag time L created the best multi-variable

model of the given data set for Ceará, Brazil. Since, as stated in Section 4, Total R2 always increases

with the introduction of more parameters, we choose to compare the models produced by the three

selection methods using the Adjusted R2. Based on the Adjusted R2, minimized AIC lag selection

produced the best model of the data provided. It is important to note however, that minimized

AIC lag selection also consistently chose a higher truncation lag time than the two other selection

criteria considered. This means that more data was used to inform the prediction for the minimized

AIC truncation lag model. This type of truncation lag criteria may be inefficient for larger datasets

as it implies a higher data use.

The marginal truncation lag model compared to the minimized AIC truncation lag model used

on average 229.1429 fewer weeks of information and had a 17.67% smaller Adjusted R2 value. This

type of truncation lag criteria is more efficient than the minimized AIC truncation lag model, using
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much less data to inform a relatively strong prediction of the data.

Next, we analyze which variables of interest contribute the most to the risk of dengue. From in

Table 6, we can see that for all truncation lag selection cases, the following variables were found to

be significant: mean NDVI, percent cloudy pixels, and Google Health Trends. Since Mean NDVI

is an indicator of vegetation, this indicates that there is a strong relationship between available

vegetation and adult mosquito abundance. As discussed in Section 1.2, adult mosquitos feed on

plant sugars as their main energy source, therefore this finding is consistent with the literature.

This result is consistent with other papers that have quantified a relationship between vegetation

and mosquito-born disease prevalence.[9, 11, 15, 26] Percent cloudy pixels, which was also found to

be significant across all models, was included in our analysis under the assumption that it may be

an indicator of rainy seasons or fog. Google Health Trends data, which reflects the relative volume

of internet searches for “dengue,” was significant across all selection criteria and has been shown in

the literature to be a possible predictor of dengue cases. [18, 23, 27]

Simple and marginal truncation lag selection both found the following predictors to be the most

significant: mean NDVI, mean Green NDWI, percent cloudy pixels, relative humidity, maximum

temperature, mean temperature, and Google Health Trends. As expected, maximum and mean

temperature were a significant indicator of dengue prevalence, which is consistent with the liter-

ature. Two of the five variables found to be significant across all models are indicators of water

content in the environment (Green NDWI and relative humidity). This is consistent with mosquito

development being highly dependent on water sources as described in Section 1.2.

The minimized AIC lag selection also exhibited another interesting trend: the majority of all

significant variables of interest generated an ideal truncation lag time of approximately 275 weeks,

or about 5 years. It has been shown in the literature that dengue occurs in 3 to 5 year period

cycles.[4, 24] The minimized AIC lag selection criteria appears to identify this cyclic trend in the

data. The variables that exhibited this trend were minimum SWIR NDWI, maximum NBR, mean

NBR, percent cloudy pixels, and Google Health Trends. Minimum SWIR NDWI measures water

content in water bodies, a variable that changes slowly over time. Maximum and mean NBR may

be reflecting land development and not just fire damage due to how they are calculated. NBR

specifically reflects a reduction in vegetation.[2] These variables may therefore be influencers of the

more long term cyclic trends of dengue infection.

Similarly, for the marginal lag selection exhibited a trend where the majority of all significant

variables of interest generated an ideal truncation lag time of approximately 25 weeks, or about

half a year. The variables that exhibited this trend were mean NDVI, mean Green NDWI, percent

cloudy pixels, relative humidity, and maximum temperature. This may indicate that the short term

effects of these variables are significant for predicting reported dengue cases. We must note however

that percent cloudy pixels was identified as a predictor of both short and long term effects.

This model framework is highly dependent on the quality of our outcome data, reported dengue

cases. First, as mentioned in the Section 1, the reported case data does not include serotype
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information. Instead, we are predicting all dengue cases, regardless of serotype. Secondly, many

dengue cases are asymptomatic and therefore go unreported. Predictions and forecasts from a

models such as these would primarily be of benefit only to healthcare providers to treat and track

symptomatic, reported cases. These predictions may not fully reflect the disease burden of dengue

in a given area.

6 Summary and Conclusions

We applied a polynomial distributed lag model to the data provided for Ceará, Brazil, using simple,

marginal, and minimized AIC truncation lag selection criteria. It was found that the minimized

AIC truncation lag model provided the best fit to the data, but was inefficient at using the data

compared to the marginal lag model. For a larger dataset including all of the states of Brazil

or a subset of municipalities for example, the marginal truncation lag selection criteria could be

considered sufficient. These models were also developed on a state-level scale, though data was

provided at a municipality-level scale. To more accurately express the spatial heterogeneity in

disease burden, a higher resolution scale should be used now that it has been shown that the model

is valid at a low resolution scale.

The strong Adjusted R2 value for both the marginal lag and minimized AIC truncation lag

models show that polynomial distributed lag models could be used to successfully predict reported

dengue cases in Ceará, Brazil. Future work would be to use these models to forecast reported

dengue cases, therefore giving public health professionals forewarning on the severity of upcoming

epidemics to create targeted, efficient interventions.

Furthermore, the ideal truncation lag results for minimized AIC criteria appeared to identify the

period of the cycle of dengue in Ceará. This periodicity in dengue epidemics has been shown to be

dependent on seasonal variation in vector demography and the number of dengue serotypes present

in the population. Patterns with 5 year cycles further indicate asymmetry in serotype virulence

and temporary cross-immunity.[33] Therefore, while all four serotypes of dengue are present in

Brazil,[32] this finding indicates that there may be asymmetry in their relative prevalence and

virulence in Ceará. As such, more serotype-specific data is essential to gather in order to create

targeted programs in Ceará.

The variables associated with this trend were indicators for large water sources, reduced vege-

tation, and increased internet searches for “dengue.” Monitoring these variables and understanding

their relationship with reported dengue cases would help improve interpretations of these models.

The ideal truncation lag results for marginal lag criteria identified predictors with short term

influence on the reported number of dengue cases. The variables associated with this trend were in-

dicators for healthy vegetation, water content in leaves, humidity, and temperature. These variables

have a more immediate effect in the expected disease burden of dengue for a given year.
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Of all the variables of interest provided, mean NDVI, percent cloudy pixels, and Google Health

Trends were found to be the significant predictors of reported dengue cases for Ceará, Brazil, across

all selection criteria. These findings were consistent with risk indicators found in the literature. It

is unclear what the implications are of percent cloudy pixels, which included in our analysis under

the assumption that it may be an indicator of rainy seasons or fog, and further research is needed

to assess the implications of this indicator.

The models developed here do provide evidence that dengue, a mosquito-borne disease, can be

predicted using satellite indicies and temperature data. Current epidemics with Zika and Chikun-

gunia in South America could be predicted and forecasted in a similar manner with this same model

and dataset, provided that reported case counts for at least 1 year are known. Since Zika is also

spread by A. aegypti, coefficient estimates for dengue could be used to make rough predictions of

the disease burden of Zika.
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Pybus, E. C. Holmes, and D. J. Gubler. Epidemic dynamics revealed in dengue evolution.

Molecular Biology and Evolution, 27(4):811–818, April 2010.

[5] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time Series Analysis: Forecasting

and Control. John Wiley Sons Inc., 5 edition, 1976.
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8 Appendix

8.1 R Code for Cleaning Dataset

All R code for creating the proper work environment.

# This s c r i p t i s ed i t ed f o r a n a l y s i s o f the dengue data o f Ceara ,

B r a z i l

# I t assumes that you have the f o l l o w i n g data :

# S h a p e f i l e s f o r B r a z i l

# Case Data

# Pred i c to r Data :

# (max/mean/min ) ndvi , (max/mean/min ) green ndwi , ( max/ [ mean ] /min ) swi r

ndwi ,

# (max/mean/min ) nbr , percent cloudy p i x e l s , relhum , (max/mean/min )

temp , goog l e t rends

#

# This data i s c a l l e d by the f i l e s :
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# rawDeng . RData , rawClustDeng . RData , rawStateDeng . RData ,

datastreamsNov20 . RData , datastreamsJan20 . RData , datastreamsJan20 .

RData

# ∗∗ s to r ed in a f o l d e r c a l l e d ”RData” in your working d i r e c t o r y (wd)

# munic ip ios 2010 s h a p e f i l e s

# ∗∗ s to r ed in a f o l d e r c a l l e d ” munic ip ios 2010”

# ∗Epidemic Weeks BRA. csv i s c u r r e n t l y not being used . User can comment

l i n e s 126−132 i f they do not have t h i s .

# Google Trends csv f i l e s

# ∗∗ s to r ed in a f o l d e r c a l l e d ”raw−data ”

#

# Edit the wd l i n e s be f o r e running . Check that you have a l l the

nece s sa ry l i b r a r i e s i n s t a l l e d .

#### Set up the Work Environment

######################################################################################

##Clear the work environment

rm( l i s t=l s ( ) )

#Set working d i r e c t o r y

setwd ( ”/Volumes/ J e s s i e ’ s Hard Drive /LANL Items / Research ” ) #/Volumes/

LIFELINE/LANL Items / Research

home = setwd ( ”/Volumes/ J e s s i e ’ s Hard Drive /LANL Items / Research ” ) #/

Volumes/LIFELINE/LANL Items / Research

l i b r a r y ( xtab l e )

l i b r a r y ( matr ixStats )

l i b r a r y ( sp )

l i b r a r y ( rgda l )

l i b r a r y ( r a s t e r )

l i b r a r y ( ggp lot2 )

l i b r a r y ( p ly r )

l i b r a r y ( l a t t i c e )

l i b r a r y ( RColorBrewer )

l i b r a r y ( c l a s s I n t )

l i b r a r y ( reshape2 )

l i b r a r y ( maptools )

24



l i b r a r y ( gr idExtra )

l i b r a r y (mgcv)

l i b r a r y ( dlnm )

#Cal l in shape f i l e s

BRAadm2 = readOGR( ” munic ip ios 2010” , ” munic ip ios 2010” )

names (BRAadm2) [ names (BRAadm2)==’ codigo ibg ’ ]<− ’Mun Number ’

names (BRAadm2) [ names (BRAadm2)==’nome ’ ] <− ’Mun Resid BR’

names (BRAadm2) [ names (BRAadm2)==’ estado id ’ ] <− ’ State Number ’

names (BRAadm2) [ names (BRAadm2)==’ uf ’ ] <− ’ State ID ’

BRAadm2$Mun Number = subs t r (BRAadm2$Mun Number , 1 , nchar ( as . cha rac t e r (

BRAadm2$Mun Number) )−1) #Chop o f f ext ra d i g i t o f UID

BRAadm2$Mun Number <− as . numeric (BRAadm2$Mun Number)

a s s i g n ( ”BRAadm2” ,BRAadm2, . GlobalEnv )

BRAadm1 = readOGR( ” es tados 2010” , ” e s tados 2010” )

names (BRAadm1) [ names (BRAadm1)==’ id ’ ]<− ’ State Number ’

names (BRAadm1) [ names (BRAadm1)==’nome ’ ] <− ’ State Name ’

names (BRAadm1) [ names (BRAadm1)==’ s i g l a ’ ] <− ’ State ID ’

a s s i g n ( ”BRAadm1” ,BRAadm1, . GlobalEnv )

##Cal l in s a t e l l i t e f i l e s

fpath = f i l e . path (home , ”RData” , ” datastreamsJan20 . RData” )

load ( fpath )

fpath = f i l e . path (home , ”RData” , ” datastreamsJan20 meso . RData” )

load ( fpath )

fpath = f i l e . path (home , ”RData” , ” datastreamsJan20 s t a t e . RData” )

load ( fpath )

datastreams <− c ( ”max ndvi ” , ”mean ndvi ” , ”min ndvi ” , ”max green ndwi” ,

”mean green ndwi” , ”min green ndwi” ,

”max swir ndwi” , ”min swir ndwi” , ”max nbr” , ”mean nbr

” , ”min nbr” , ” percent cloudy p i x e l s ” ,

” relhum” , ”tmax” , ”tmean” , ”tmin” )

#Cal l in case data

fpath = f i l e . path (home , ”RData” , ”rawDeng . RData” ) #Raw case data f o r

dengue by munic ipa l i ty , mesoleve l , and s t a t e

25



load ( fpath )

fpath = f i l e . path (home , ”RData” , ” rawClustDeng . RData” )

load ( fpath )

fpath = f i l e . path (home , ”RData” , ” rawStateDeng . RData” )

load ( fpath )

Deng . a l l <− cbind ( d l i s t 1 [ [ 1 ] ] [ , 1 : ( nco l ( d l i s t 1 [ [ 1 ] ] ) −2) ] , d l i s t 1

[ [ 2 ] ] [ , 3 : ( nco l ( d l i s t 1 [ [ 2 ] ] ) −2) ] , d l i s t 1 [ [ 3 ] ] [ , 3 : ( nco l ( d l i s t 1 [ [ 3 ] ] )

−2) ] ,

d l i s t 1 [ [ 4 ] ] [ , 3 : ( nco l ( d l i s t 1 [ [ 4 ] ] ) −2) ] , d l i s t 1

[ [ 5 ] ] [ , 3 : ( nco l ( d l i s t 1 [ [ 5 ] ] ) −2) ] , d l i s t 1 [ [ 6 ] ] [ , 3 : (

nco l ( d l i s t 1 [ [ 6 ] ] ) −2) ] ,

d l i s t 1 [ [ 7 ] ] [ , 3 : ( nco l ( d l i s t 1 [ [ 7 ] ] ) −2) ] )

Deng . a l l . s t a t e <− cbind ( d l i s t 4 [ [ 1 ] ] [ , 1 : ( nco l ( d l i s t 4 [ [ 1 ] ] ) −2) ] , d l i s t 4

[ [ 2 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 2 ] ] ) −2) ] , d l i s t 4 [ [ 3 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 3 ] ] )

−2) ] ,

d l i s t 4 [ [ 4 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 4 ] ] ) −2) ] , d l i s t 4

[ [ 5 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 5 ] ] ) −2) ] , d l i s t 4

[ [ 6 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 6 ] ] ) −2) ] ,

d l i s t 4 [ [ 7 ] ] [ , 2 : ( nco l ( d l i s t 4 [ [ 7 ] ] ) −2) ] )

Deng . a l l . meso <− as . data . frame ( cbind ( d l i s t 7 [ [ 1 ] ] [ , 1 : ( nco l ( d l i s t 7 [ [ 1 ] ] )

−2) ] , d l i s t 7 [ [ 2 ] ] [ , 2 : ( nco l ( d l i s t 7 [ [ 2 ] ] ) −2) ] , d l i s t 7 [ [ 3 ] ] [ , 2 : ( nco l (

d l i s t 7 [ [ 3 ] ] ) −2) ] ,

d l i s t 7 [ [ 4 ] ] [ , 2 : ( nco l ( d l i s t 7 [ [ 4 ] ] )

−2) ] , d l i s t 7 [ [ 5 ] ] [ , 2 : ( nco l (

d l i s t 7 [ [ 5 ] ] ) −2) ] , d l i s t 7

[ [ 6 ] ] [ , 2 : ( nco l ( d l i s t 7 [ [ 6 ] ] ) −2)

] ,

d l i s t 7 [ [ 7 ] ] [ , 2 : ( nco l ( d l i s t 7 [ [ 7 ] ] )

−2) ] ) )

mun i c ipa l i ty l i s t <− d l i s t 1

s t a t e l i s t <− d l i s t 4

meso l eve l l i s t <− d l i s t 7

rm( l i s t = c ( ’ d l i s t 1 ’ , ’ d l i s t 4 ’ , ’ d l i s t 7 ’ ) )

# Reorder Case Data to match s a t e l l i t e
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idx <− sapply ( datastreamsLIST [ [ 1 ] ] $Mun Number , f unc t i on ( x ) {
which ( mun i c ipa l i ty l i s t [ [ 1 ] ] $Mun Number == x ) })

f o r ( i in 1 : 7 ) {
munic ipa l i ty l i s t [ [ i ] ] <− munic ipa l i ty l i s t [ [ i ] ] [ u n l i s t ( idx ) , ]

}
Deng . a l l <− Deng . a l l [ u n l i s t ( idx ) , ]

idx <− sapply ( datastreamsLIST s t a t e [ [ 1 ] ] $ State Number , f unc t i on ( x ) {
which ( s t a t e l i s t [ [ 1 ] ] $ State Number == x ) })

f o r ( i in 1 : 7 ) {
s t a t e l i s t [ [ i ] ] <− s t a t e l i s t [ [ i ] ] [ u n l i s t ( idx ) , ]

}
Deng . a l l . s t a t e <− Deng . a l l . s t a t e [ u n l i s t ( idx ) , ]

idx <− sapply ( datastreamsLIST meso [ [ 1 ] ] $Meso Number , f unc t i on ( x ) {
which ( meso l eve l l i s t [ [ 1 ] ] $ c l u s t e r == x ) })

f o r ( i in 1 : 7 ) {
meso leve l l i s t [ [ i ] ] <− meso leve l l i s t [ [ i ] ] [ u n l i s t ( idx ) , ]

}
Deng . a l l . meso <− Deng . a l l . meso [ u n l i s t ( idx ) , ]

# Grab in t rue dates

fpath = f i l e . path (home , ”Dengue data ” , ”Epidemic Weeks BRA. csv ” )

ep i . weeks <− read . csv ( fpath , header = TRUE)

ep i . weeks1 <− c ( as . cha rac t e r ( ep i . weeks [ 1 : 5 2 , 2 ] ) , as . cha rac t e r ( ep i . weeks

[ 1 : 5 2 , 3 ] ) , as . cha rac t e r ( ep i . weeks [ 1 : 5 2 , 4 ] ) ,

as . cha rac t e r ( ep i . weeks [ 1 : 5 2 , 5 ] ) , as . cha rac t e r ( ep i . weeks

[ 1 : 5 3 , 6 ] ) , as . cha rac t e r ( ep i . weeks [ 1 : 5 2 , 7 ] ) ,

as . cha rac t e r ( ep i . weeks [ 1 : 5 2 , 8 ] ) )

ep i . weeks1 <− as . Date ( ep i . weeks1 , ”%m/%d/%y” )

ep i . weeks1 <− ep i . weeks1 [ 1 : nco l (Deng . a l l ) ]

# Un l i s t State l e v e l data

datastreams <− c ( ”max ndvi ” , ”mean ndvi ” , ”min ndvi ” , ”max green ndwi” ,

”mean green ndwi” , ”min green ndwi” ,

”max swir ndwi” , ”min swir ndwi” , ”max nbr” , ”mean nbr

” , ”min nbr” , ” percent cloudy p i x e l s ” ,
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”relhum” , ”tmax” , ”tmean” , ”tmin” )

f o r ( i in 1 : l ength ( datastreams ) ){ #This loop unz ips the l i s t i n to i t s

s epara t e e lements

a s s i g n ( paste ( datastreams [ i ] ) , datastreamsLIST s t a t e [ [ i ] ] , . GlobalEnv )

}

s t a t e <− c ( ’AC’ , ’AL ’ , ’AM’ , ’AP ’ , ’BA’ , ’CE ’ , ’DF ’ , ’ES ’ , ’GO’ , ’MA’ , ’

MG’ , ’MS’ , ’MT’ ,

’PA ’ , ’PB ’ , ’PE ’ , ’ PI ’ , ’PR ’ , ’RJ ’ , ’RN’ , ’RO’ , ’RR’ , ’RS ’ , ’

SC ’ , ’SE ’ , ’SP ’ , ’TO’ )

# Create f u n c t i o n s to be used

grab . goog l e . data <− f unc t i on ( s t a t e num=6){
## Function to grab Google Health data

fpath = f i l e . path (home , ”raw−data ” , paste ( ”BR−” , s t a t e [ s t a t e num] , ” . csv

” , sep = ”” ) )

hea l th . t r ends . data .mun <− read . csv ( fpath , header = TRUE, sep = ” , ” ,

c o l C l a s s e s = c ( ”Date” , rep ( ”numeric ” ,20) ) )

fpath = f i l e . path (home , ”raw−data ” , ”BR. csv ” )

hea l th . t r ends . data <− read . csv ( fpath , header = TRUE, sep = ” , ” ,

c o l C l a s s e s = c ( ”Date” , rep ( ”numeric ” ,20) ) )

a s s i g n ( ” hea l th . t r ends . data . s t a t e ” , hea l th . t r ends . data .mun, . GlobalEnv

)

a s s i g n ( ” hea l th . t r ends . data ” , hea l th . t r ends . data , . GlobalEnv )

}

s e l e c t . season <− f unc t i on ( season , mydat , f l a g=” o f f ” ){
#Decide on season subset . Seaons are s e t up such that they f o l l o w

t h i s :

# Dengue Season : Jan − Apr i l Wk 1 :18 o f a year (18 weeks )

# Pre−Dengue Season : May−Aug Wk 19:35 o f a year (17 weeks )

# Post−Dengue Season : Sept−Dec Wk 36:52 o f a year (17 weeks [ 18

weeks f o r 2014 ] )

#The data we have i s Jan 2010 through July 2016

mydata2 <− mydat

i f ( season==”Dengue” ) {
s ea s <− c ( 1 : 1 8 , 5 3 : 7 0 , 1 0 5 : 1 2 2 , 1 5 7 : 1 7 4 , 2 0 9 : 2 2 6 , 2 6 2 : 2 7 9 , 3 1 4 : 3 3 1 )
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pr in t ( ”You are c a l l i n g Dengue season . 2016 data i s a v a i l a b l e f o r

f o r e c a s t i n g t h i s season . ” )

} e l s e i f ( season==”Post−Dengue” ) {
s ea s <− c ( 1 9 : 3 5 , 7 1 : 8 7 , 1 2 3 : 1 3 9 , 1 7 5 : 1 9 1 , 2 2 7 : 2 4 3 , 2 8 0 : 2 9 6 , 3 3 2 : 3 4 4 )

p r i n t ( ”You are c a l l i n g Post−dengue season . 2016 data i s miss ing 4

weeks o f t h i s season . Forecas t ing i s l i m i t e d . ” )

} e l s e {#season==”Pre−Dengue”

s ea s <− c ( 3 6 : 5 2 , 88 : 1 0 4 , 1 4 0 : 1 5 6 , 1 9 2 : 20 8 , 2 44 : 2 6 1 , 2 9 7 : 3 1 3 )

p r i n t ( ”You are c a l l i n g Pre−dengue season . 2016 data i s miss ing f o r

t h i s season . 2015 w i l l be used f o r f o r e c a s i n g . ” )

}
i f ( f l a g==” o f f ” ){

ep i . weeks2 <− ep i . weeks1 [ s ea s ]

a s s i g n ( ” ep i . weeks2” , ep i . weeks2 , . GlobalEnv )

}
mydata2 <− mydata2 [ which ( mydata2$ season==season ) , ]

r e turn ( mydata2 )

}

s e t . data <− f unc t i on ( s t a t e num=6, season1 ) {
grab . goog l e . data ( s t a t e num)

c a s e o f i n t e r e s t = Deng . a l l . s t a t e [ which (Deng . a l l . s t a t e $ State Number ==

s t a t e num) , ]

c a s e o f i n t e r e s t 1 <− c a s e o f i n t e r e s t [ 2 : l ength ( c a s e o f i n t e r e s t ) ]

#Build data matrix with i n f o o f i n t e r e s t

idx <− which (mean ndvi $ State Number == s t a t e num)

mydata <− data . frame ( time = 1 :344 , dengue ca s e s = t ( c a s e o f i n t e r e s t 1 ) ,

#GoogleHealthTrends = hea l th . t r ends . data .mun[ 5 3 : 3 9 6 , 3 ] , #Ca l l i ng

the search term ”dengue” only

max ndvi = t (max ndvi [ idx , 3 : 3 4 6 ] ) , mean ndvi= t (

mean ndvi [ idx , 3 : 3 4 6 ] ) , min ndvi= t (min ndvi [

idx , 3 : 3 4 6 ] ) ,

max green ndwi = t (max green ndwi [ idx , 3 : 3 4 6 ] ) ,

mean green ndwi = t (mean green ndwi [ idx

, 3 : 3 4 6 ] ) , min green ndwi = t (min green ndwi [

idx , 3 : 3 4 6 ] ) ,
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max swir ndwi = t (max swir ndwi [ idx , 3 : 3 4 6 ] ) , min

swi r ndwi = t (min swir ndwi [ idx , 3 : 3 4 6 ] ) ,

max nbr = t (max nbr [ idx , 3 : 3 4 6 ] ) ,mean nbr = t (

mean nbr [ idx , 3 : 3 4 6 ] ) , min nbr = t (min nbr [ idx

, 3 : 3 4 6 ] ) ,

percent cloudy p i x e l s = t ( percent cloudy p i x e l s [

idx , 3 : 3 4 6 ] ) , relhum = t ( relhum [ idx , 4 1 : 3 8 4 ] ) ,

max temp = t ( tmax [ idx , 4 1 : 3 8 4 ] ) ,mean temp = t (

tmean [ idx , 4 1 : 3 8 4 ] ) , min temp = t ( tmin [ idx

, 4 1 : 3 8 4 ] ) ,

goog l e t rends = hea l th . t r ends . data . s t a t e

[ 1 : 3 4 4 , 3 ] )

mydata . names <− c ( ” time ” , ”dengue ca s e s ” , ”max ndvi ” , ”mean ndvi ” , ”

min ndvi ” , ”max green ndwi” , ”mean green ndwi” , ”min green ndwi” ,

”max swir ndwi” , ”min swir ndwi” , ”max nbr” , ”mean

nbr” , ”min nbr” , ” percent cloudy p i x e l s ” ,

” relhum” , ”max temp” , ”mean temp” , ”min temp” , ”

goog l e t rends ” )

colnames ( mydata ) <− mydata . names

#Subset f o r seasons

mydata$ season <− c ( 1 : 3 4 4 )

mydata$ season [ c ( 1 : 1 8 , 5 3 : 7 0 , 1 0 5 : 1 2 2 , 1 5 7 : 1 7 4 , 2 0 9 : 2 2 6 , 2 6 2 : 2 7 9 , 3 1 4 : 3 3 1 ) ]

<− ”Dengue”

mydata$ season [ c ( 1 9 : 3 5 , 7 1 : 8 7 , 1 2 3 : 1 3 9 , 1 7 5 : 1 9 1 , 2 2 7 : 2 4 3 , 2 8 0 : 2 9 6 , 3 3 2 : 3 4 4 ) ]

<− ”Pre−Dengue”

mydata$ season [ c ( 36 : 5 2 , 8 8 : 10 4 , 1 40 : 1 5 6 , 1 9 2 : 2 0 8 , 2 4 4 : 2 61 , 2 97 : 3 1 3 ) ] <− ”

Post−Dengue”

mydata$ year <− c ( rep (2010 ,52) , rep (2011 ,52) , rep (2012 ,52) , rep (2013 ,52) ,

rep (2014 ,53) , rep (2015 ,52) , rep (2016 ,31) )

a s s i g n ( ”mydata” , mydata , . GlobalEnv )

a s s i g n ( ”mydata . names” , mydata . names , . GlobalEnv )

mydata . season . raw <− s e l e c t . season ( season1 , mydat = mydata )

a s s i g n ( ”mydata . season . raw” , mydata . season . raw , . GlobalEnv )

}
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s t a t e num <− 6

s t a t e [ s t a t e num] #Check which s t a t e you are c a l l i n g

8.2 SAS Code for Proc PDLREG

All SAS code for Proc PDLREG procedure. Example code shown here is for Maximum NDVI with

truncation lag L = 5 and degrees of freedom D = 8 for the polynomial constructing the coefficients.

proc import out= mydat d a t a f i l e= ’C: / Users / jconrad4 /Documents/ ceara

data . x l sx ’

dbms=x l sx r e p l a c e ;

getnames=yes ;

run ;

proc pd l reg data=mydat ;

model dengue ca s e s = max ndvi (5 , 4 ) ;

ods output FitSummary=t e s t s e t ;

run ;

8.3 SAS Macro Code for Marginal βL

All SAS code for finding when the marginal coefficient of the polynomial distributed lag model is

equivalently zero. This was made in reference to the SAS manual for Proc Pdlreg. [20]

%macro marg ina l loop ( xvar ) ;

proc import out= mydat d a t a f i l e= ’C: / Users / jconrad4 /Documents/ ceara

data . x l sx ’

dbms=x l sx r e p l a c e ;

getnames=yes ;

run ;

%l e t n=9; /∗ f i r s t l ag case to t e s t ∗/

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

ods output LagDist = t e s t s e t ;

run ;

/∗ f i r s t l ag case to t e s t ∗/

data la s t row ;

i f 0 then s e t t e s t s e t nobs=nobs end=eo f ;

s e t t e s t s e t po int = nobs ;

output ;
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stop ;

run ;

data n u l l ;

s e t l a s t row ;

c a l l symputx ( ”BTerm” , Probt ) ;

run ;

%put BTerm = &BTerm . ;

/∗ Do loop u n t i l t e rmina l c o e f f i n s i g n i f i c a n t ∗/

%do %u n t i l (&BTerm < 0 . 10 ) ;

%put n=&n . ;

%l e t n=%eva l (&n . + 1) ; /∗ &n holds the value ∗/

ods exc lude a l l ; /∗ suspend a l l open d e s t i n a t i o n s ∗/

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

ods output LagDist = t e s t s e t ;

run ;

/∗ f i n d minimum prob ( t ) ∗/

proc s o r t data=t e s t s e t ;

by Probt ; run ;

proc s o r t data=t e s t s e t ( obs=1) ;

by Probt ; run ;

data n u l l ;

s e t t e s t s e t ;

c a l l symputx ( ”BTerm” , Probt ) ;

run ;

%put BTerm = &BTerm . ;

%end ;

/∗ f i n d minimum marginal t ∗/

%do %u n t i l (&BTerm > 0 . 10 ) ;

%put n=&n . ;

%l e t n=%eva l (&n . + 1) ; /∗ &n holds the value ∗/

ods exc lude a l l ; /∗ suspend a l l open d e s t i n a t i o n s ∗/

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

ods output LagDist = t e s t s e t ;

run ;

data la s t row ;

i f 0 then s e t t e s t s e t nobs=nobs end=eo f ;

32



s e t t e s t s e t po int = nobs ;

output ;

stop ;

run ;

data n u l l ;

s e t l a s t row ;

c a l l symputx ( ”BTerm” , Probt ) ;

run ;

%put BTerm = &BTerm . ;

%end ;

/∗ Print f i n a l r e s u l t ∗/

ods exc lude none ;

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

run ;

%mend marg ina l loop ;

%marg ina l loop (max ndvi ) ;

8.4 SAS Macro Code for Minimizing AIC Score

All SAS code for minimizing the AIC score of the polynomial distributed lag model. This was made

in reference to the SAS manual for Proc Pdlreg. [20]

%macro AICloop ( xvar ) ;

proc import out= mydat d a t a f i l e= ’C: / Users / jconrad4 /Documents/ ceara

data . x l sx ’

dbms=x l sx r e p l a c e ;

getnames=yes ;

run ;

%l e t n=9; /∗ f i r s t l ag case to t e s t ∗/

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

ods output FitSummary=t e s t s e t ;

run ;

data n u l l ;

s e t t e s t s e t ;

i f Label2=”AIC” then c a l l symputx ( ”AICnew” , nValue2 ) ;
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run ;

%put AICnew = &AICnew . ;

%put AICold = 1000000000; /∗ A r b i t r a r i l y l a r g e to i n i t i a l i z e loop ∗/

/∗ Do loop whi le AIC dec r ea s e s ∗/

%do %u n t i l (&AICnew > &AICold ) ;

%put n=&n . ;

%l e t n=%eva l (&n . +1) ; /∗ &n holds the value ∗/

%l e t AICold = &AICnew ; /∗ Replace AICold with prev ious AICnew value ∗/

%put AICold = &AICold ;

ods exc lude a l l ; /∗ suspend a l l open d e s t i n a t i o n s ∗/

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

ods output FitSummary=t e s t s e t ;

run ;

data n u l l ;

s e t t e s t s e t ;

i f Label2=”AIC” then c a l l symputx ( ”AICnew” , nValue2 ) ;

run ;

%put AICnew = &AICnew ;

%end ;

/∗ Print f i n a l r e s u l t ∗/

ods exc lude none ;

proc pd l reg data=mydat ;

model dengue ca s e s = &xvar (&n , 8 ) ;

run ;

%mend AICloop ;

%AICloop (max ndvi ) ;
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