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Abstract

Using data for Ceard, Brazil, we construct a polynomial distributed lag model under dif-
ferent truncation lag criteria to predict reported dengue cases. Accurately predicting dengue
cases provides the framework to develop forecasting models, which would provide public health
professionals time to create targeted interventions for areas at high risk of dengue outbreaks.
Others have shown that variables of interest such as temperature and vegetation can be used
to predict dengue cases. These models did not detail how truncation lag criteria was chosen for
their respective models when polynomial distributed lag was used. We explore current trunca-
tion lag selection methods used widely in the literature (simple, marginal, and minimized AIC)
and determine which of these methods works best for our given dataset. While minimized AIC
truncation lag selection produced the best fit to our data (Adjusted R?=0.9996), this method
used substantially more data to inform its prediction and resulted in a 21.46% increase in the
Adjusted R? compared to the marginal truncation lag selection method (Adjusted R?=0.7298).
Finally, the following variables were found to be significant predictors of dengue in this region:
mean normalized difference vegetation index, percent cloudy pixels, and Google Health Trends
data.
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1 Background

Dengue cases are on the rise in Ceard, Brazil. Creating disease control programs to help prevent
dengue are dependent on our understanding of the mechanisms involved with dengue transmission,

and the region at risk.

1.1 Dengue in Ceara, Brazil

Mosquito born diseases are a major burden to public health, accounting for more than 17% of all
infectious disease cases globally. 30] Approximately 40% of the world is at risk for dengue infection,
with that burden even higher in endemic regions of Africa, Asia, and the Americas.[10; 14] Dengue
virus in particular is a leading cause of death in tropical zones, such as Brazil.

Dengue virus originated in Africa or Southeast Asia and was geographically restricted until the
mid-20th century. Cargo shipments during and after World War II are suspected to be the cause
of the global spread of Aedes mosquitos around the world, as well as the diseases they carry.[6’ 14
In 1967, Aedes aegypti, the main vector for dengue, was introduced to Brazil, and Brazil responded
quickly by launching Aedes mosquito control programs. Despite these efforts, the mosquito spread
rapidly across Brazil. By 1998, over half a million dengue cases were reported annually in Brazil

and more than 1.5 million cases annually are reported today. 7, 13, 14

The majority of all dengue cases in Brazil are reported in the Southeast and Northeast regions.[6]
Ceara is a state in the Northeast region of Brazil. Dengue was introduced to Ceard in the mid
1980s(6: 13], with the first major outbreak reported in 1986. Since this time, there have been annual
outbreaks of dengue in Ceard. In 1994, Ceard alone was responsible for 84% of all reported dengue
cases, with the majority of these cases being reported in the city of Fortaleza.!’! Compared to
dengue epidemics in the 1980s where fewer than a hundred cases a year were reported in Ceard, we

[13) Figure 1 shows the reported

are now seeing no less than a thousand cases or more each year.
case data by state for the Northeast region of Brazil, in which Ceara is included, by epidemic week,
from January 3, 2010 to the week of July 3, 2016. We can observe that Ceara often has one of the
highest disease burdens of all states in this region in any given year, with an average reported case
count of a over 1,000 per year.

Figure 2 shows the reported case data by mesoregion for Ceard for the same time span of
epidemic weeks. We can observe from the raw data that the majority of the disease burden is
in the mesoregion cluster Metropolitana de Fortaleza, or the City of Fortaleza for any given year,
indicating a high disease burden in urban areas and heterogeneity of disease burden in this region.

As the number of dengue cases in Ceard and across Brazil continues to rise, it is important to
create new innovative tools for informing disease control. We will discuss prediction methods which

can inform disease control specialists on future cases of dengue.
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Figure 1: Left: The raw weekly case data for Ceara, Brazil, (in royal blue) compared to other states in the Northeast region of
Brazil for January 2010 through July 2016. Right: Map of the Northeast region of Brazil, color code for each state matching the
raw case data shown at left. The raw reported case data was provided by the Ministério da Satude, also known as the Ministry
of Health of Brazil.
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Figure 2: Left: The raw weekly case data for Ceard, Brazil, by mesoregion clusters of municipalities for January 2010 through
July 2016 (7 geopolitical clusters of the 44 municipalities). Mesoregions are geopolitical clusters of municipalities, grouped
by proximity and common characteristics by the Instituto Brasileiro de Geografia e Estatistica in 1999 for statistical analysis
purposes.[28} The raw reported case data was provided by the Ministry of Health of Brazil. Right: Map of Ceara, Brazil, color

coded for each mesoregion matching the raw case data shown at left.




1.2 Transmission Dynamics of Dengue

In order to create targeted, successful intervention campaigns for dengue in Brazil, it is important to
understand the underlying dynamics of the disease. In this section, we will review what dengue is,
the transmission pathway of dengue, the life cycle of A. aegypti, and available intervention measures.

Dengue virus is transmitted via the bite of a mosquito to a human. Mosquitos of the Aedes
family are the main vector for dengue, with A. aegypti responsible for the majority of all dengue
transmission.[6: 10, 14] Typically, symptoms of dengue fever develop 5 days after infection 10, 14)
and can last up to 10 days. During this time, there is a 5-day period where the viral load is high
enough for humans to transmit dengue virus to a mosquito via a bite. Most cases are asymptomatic
14 31 but symptoms include undifferentiated febrile illness (viral syndrome), dengue fever (DF),
dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS). It is important to note that
dengue infections are most likely higher than reported, with an estimated 15% reporting rate in
1999,[22] which may be due in part to the large number of asymptomatic cases of dengue driving a
silent epidemic.[M’ 31 The global burden of dengue is far worse than is currently assumed.

Vaccines are in development for dengue, but as of yet do not have widespread use. This is
due in large part to issues arising from interactions between dengue serotypes. There are four
major serotypes of denuge (DENV-1, DENV-2, DENV-3, and DENV-4), all of which are found in
Brazil.32) Certain combinations of these serotypes can increase or decrease risk of dengue hem-
orrhagic fever,[35} complicating treatment and development of vaccines, which must take this into
consideration.

Transmission of dengue by mosquitos generally follow this pathway 10, 14y,

e An infected mosquito bites an uninfected (susceptible) human

e The virus multiplies in the blood over the course of 4 days

e A susceptible mosquito bites the now infected human (5-12 days since first infection of human)
e The pathogen develops in the gut of the mosquito over 8-12 days (extrinsic incubation period)
e The mosquito is now infected and the cycle repeats

Infected mosquitos can continue to transmit dengue virus for the duration of their lifetime,
usually 3-4 weeks. This cycle assumes that there are adult mosquitos to participate in the trans-
mission pathway. Therefore, the disease burden on humans is correlated to the abundance of adult
mosquitos.

Abundance of A. aegypti depends on their breeding habits: mosquitos lay their eggs into con-
tainers with water, where they can remain for months, and eggs hatch after a rain or flooding.
Larvae develop into pupa within a week, and into adult mosquitos within another two days. This

process takes 8-10 days at room temperature.[m} From Figures 1 and 2, we can see there is a peak



in dengue cases by April in Brazil of each year, though the magnitude of the peak varies year to
year. This is a general seasonal trend across Brazil, which corresponds to the rainy season and
warmer spring temperatures.[& 14, 24

Upon understanding the life cycle of the mosquito, we can identify multiple influencing factors
that effect the development of the mosquito, therefore abundance of dengue cases. Influencing

factors include the following:

e Urban Environment: For the eggs to be laid, there need to be suitable containers for
breeding. The vector itself prefers urban environments for breeding, which also enhances
the spread of the virus.[0 10: 141 Urhan environments offer close contact with a blood source
(humans) and easy breeding grounds. This tendency lends to the geographic heterogeneity
that can be observed in the reported dengue cases. As seen in Figure 2, the mesoregion
containing Fortaleza, the major city of Ceard, reported the most dengue cases in any given

year.

e Water Sources/Rainfall: Eggs hatch after there has been rain or flooding, and therefore
are sensitive to events involving water. The amount of rainfall is a known indicator of dengue

prevalence. (14, 29

e Temperature: The developmental and reproductive cycles of A. aegypti are sensitive to
temperature variation, which is what results to the overall seasonal variance of dengue that

6, 14

is observed on a macro level. Higher temperatures reduce the time it takes for dengue

virus to develop in the gut of the mosquito, increasing the infectious period of the mosquito.[M]

e Vegetation: Male and female mosquitos feed on plant nectars, fruit juices, and other plants
sugars as their main energy source, making vegetation another factor important to their
survival. 10 Abundance of vegetation depends on factors such as rainfall, temperature, and

humidity.

In the absence of a reliable vaccine, public health professionals have focused on vector control
measures to reduce dengue incidence. Vector control measures take advantage of the mosquito life
cycle. For example, larval fish target the larval stage of mosquito development, while insecticide
sprays target adult mosquitos. Education on mosquito breeding grounds have also been used to try
to reduce mosquito abundance in urban areas. 4] But such measures require time and expensive
resources to implement. Figures 1 and 2 show that the disease burden of dengue in Brazil is highly
heterogeneous geographically and changes year to year. To reduce costs and increase effectiveness,

control programs should be more targeted to specific areas of high risk.



2 Introduction

Upon understanding some of the factors of the life cycle of A. aegypti outlined in Section 1.2,
we can see that mosquito abundance is dependent on multiple factors: access to standing water,
temperature, urbanization, vegetation, and rainfall. All of these variables effect the development
of the mosquito from egg to larvae to adult. There is a time delay from weather factors to in-
creased mosquito abundance, and therefore from weather factors to increased risk of infection from
mosquitos.

We will use polynomial distributed lag models to forecast risk of dengue cases in Ceard, Brazil,

using the following predictor variables described in Section 2.1.

2.1 Variables with Delayed Effect on Mosquitos

Since we are focusing on dengue transmission in Brazil, we will consider the life cycle of A. aegypti
specifically. This mosquito thrives in tropical and subtropical regions where the winter is no colder
than 10°C. This is due to the fact that their reproductive cycle is highly dependent on temperature,

6. 10, 14 This and other factors were outlined in detail in

as previously mentioned in Section 1.2.
Section 1.2. We want to look at data that describes these effects as predictors for dengue caseloads.

Satellite indices data were provided by the Descartes Labs, and a description of this data in
Table 1. For NDVI, Green NDWI, SWIR NDWI, and NBR, the maximum, mean, and minimum
value collected each epidemic week was reported. Percent cloudy pixels were collected to account
for weeks when the indices could not be collected due to cloud cover. This may be an indicator of
rainy seasons or fog. It is unclear from the data. When the satellite data is sampled at a higher
frequency than once per week, the average value for each epidemic week is reported. Data was
recorded from January 3, 2010 to the week of July 3, 2016 to match reported case data, provided
by the Ministry of Health of Brazil. Reported case data does not include serotype information for

a municipality or state level.

Index Name Abr. Formula Description
Normalized Difference Vegetation NDVI il Indicator of healthy, green vegetation
Normalized Difference Water (Green) | Green NDWI % Indicator of water content in leaves
Normalized Difference Water (SWIR) | SWIR NDWI % Indicator of water content in water bodies
Normalized Burn Ratio NBR % Indicator of burned areas and fire severity
Percent Cloudy Pixels - - Percent of total pixels covered by clouds

Table 1: Table with description of satellite indices provided by Descartes Lab database. Green, red,
near infrared (NIR), and short wave infrared (SWIR) refer to spectral reflectance measurements of

wavelengths used in the calculations.

Additionally, temperature and relative humidity data was collected from National Oceanic and



Atmospheric Administration (NOAA). Data was averaged across space and time such that maxi-
mum, mean, and minimum temperature and relative humidity, reported weekly at a municipality
level for Ceara. Google Health Trends data for the state of Ceard was also included as a possible
predictor. Google Health Trends data used in this analysis was for the relative number of searches
by state for the term “dengue.”

The following variables of interest were considered as possible predictors of future dengue cases:
Maximum, mean, and minimum NDVI; Maximum, mean, and minimum Green NDWI; Maximum,
and minimum SWIR NDWI; Maximum, mean, and minimum NBR; Maximum, mean, and minimum
temperatures in Celsius; Relative humidity; Percent cloudy pixels; Google Health Trends data.
Mean SWIR NDWTI is missing from the data sets that were provided to the author. Summary
statistics for the data used in this analysis is shown in Table 2.

The data is provided at a municipality level scale. There were 5564 municipalities in Brazil at
the start of this data set in 2010, with these organized into 136 mesoregions within 27 states. The

state of Ceara has 7 mesoregions which contain 184 municipalities.

Variable N Mean Std Dev Min. Max.
Reported Dengue Cases | 344 | 886.0581395 1084.53 61 6754
Max NDVI 344 | 0.0047152 | 0.00036208 0.0032693 0.0054419
Mean NDVI 344 | 0.0013696 | 0.000141389 | 0.000839939 0.0019117
Min NDVI 344 | -0.0047575 0.0014459 -0.0067328 -0.0015583

Max Green NDWI 344 | 0.0048181 0.0014178 0.0016656 0.0067616
Mean Green NDWI 344 | -0.0011883 | 0.000143239 | -0.0016603 | -0.000678846
Min Green NDWI 344 | -0.0042328 | 0.000294099 | -0.0048271 -0.002906
Max SWIR NDWI 344 | 0.0058034 | 0.000416952 | 0.0044158 0.0070395
Min SWIR NDWI 344 | -0.0030609 0.0012145 -0.0054567 | -0.000539747

Max NBR 344 | 0.005248 0.000955511 |  0.0033392 0.0068565
Mean NBR 344 | 0.0011671 0.0002766 | -0.000305496 | 0.0015328
Min NBR 344 | -0.0035686 0.0013242 -0.005861 -0.000699305

Percent cloudy pixels | 344 | 0.3279851 0.1213258 0.0715466 0.6041456
Relative humidity 344 | 0.5329018 0.0429924 0.4382377 0.6041358
Max temperature 344 | 0.2269754 0.0082925 0.2080857 0.2454742
Mean temperature 344 | 0.1941354 0.0062933 0.1784672 0.2102962
Min Temperature 344 | 0.1568894 0.0181173 0.0994845 0.1729983

Google Health Trends | 344 2540.45 2148.93 314.6121608 12358.35

Table 2: Table with summary statistics for all variables.



2.2 Distributed Lag Models

All our data is presented in a time series format. In statistics and economics, distributed lag models
are used for analysis of time series data. Distributed lag models assume that the effect of a predictor
z on an output y occurs over an interval of time, ¢ € [0, —L], rather than all at once. In other
words, the output y depends on the effect of x at time t,t —1,...,t —1[,...,t — L, where L is the

truncation lag time. We can write this model as the following:

Y(t) =co+ Box(t) + frx(t = 1)+ -+ Fa(t = 1) + ... Bra(t — L) (1)
=co+ Y Balt—1) (2)

Traditionally, this could be considering the delayed effect of new income taxes on the income of

y.[lg} In terms of health, we can consider more generally

suppliers or of a new policy on the econom
the delayed effect of an exposure on a given response. For example, the effect of particulate matter
air pollution to lung health 34 for environmental health, the effect of Gross National Product
(GNP) to health [16] for health policy, and the effect of climate on mosquitos 8, 21] for vector born
diseases.

We will focus on polynomial distributed lag models, which were first proposed by Shirley Almon
in 1965.13 Consider for example z(t) and x(t—1) of Equation 1. Since these variables are correlated,
their coefficients 5y and (37 are also correlated, leading to issues with multicollinearity. This can
lead to two issues: (a) if the model is identifiable, the covariance matrix of the estimated coefficients
[ may be nearly singular leading to numerical problems and (b) since there are L + 2 coefficients
to estimate, the degrees of freedom will quickly be exhausted. So, we instead assume that all the j;
follow some continuous function such that 5, = f(I). For polynomial distributed lag, we construct
f(1) as some polynomial function of at most degree D in lag length /. Using Equation 2, we can

NOwW Write[lﬁ :

D
Bi=f()=ap+aol+ - +apl”’ = Zadld forall 1. (3)
L . L D
Y(t) =co+ > fDa(t—1) =co+ > Y aga(t—1). (4)
=0 =0 d=0

Since f3; is now determined by a polynomial function, we have resolved our issues: (a) The
covariance matrix of the f; is no longer nearly singular and (b) Now there are only D +2 coefficients
to estimate instead of L + 2. We can limit the size of D such that we do not exhaust our degrees
of freedom.

We can further simplify the problem by setting s; = ZIL:O l92(t — 1), and rewrite Y (¢) to find:

D
Y (t) =co + S0 + a151 + -+ - + apsp =cy + Z QgSq - (5)
d=0

10



From here, we can solve the linear system for ay to reconstruct ;. Since there may still be issues
with correlation among the new coefficients ay, we choose our polynomial basis functions f(I) such
that they are orthogonal. Rather, o4(l) is some orthogonal polynomial of degree d in lag length
[, such that s; = Zleo oa(D)x(t —1). 201 Orthogonal polynomials can be constructed using the

methodology laid out by Emerson et al. as follows: [12, 20
- . _ lifj=k
Z w;0;(1)og (1) = ‘ ; (6)
i=1 0if j #k

where w; is a weighting factor, n = d + 1, and 0;(i) is the j degree of the orthogonal polynomial

in lag length .

2.3 Objectives

We will apply a polynomial distributed lag model to the data provided for Ceara, Brazil, under
various truncation lag selection criteria. In particular, we will analyze the prediction capabilities of
each of the variables of interest described in Section 2.1, identifying which contribute most to the

risk of dengue.

3 Methodology

As described in Section 2.1, we were provided with the data sets for 17 different predictor variables
of interest at a municipality level for Ceard and the reported number of dengue cases. Since we
want to do analysis for the state-level of Ceard, we aggregated the data to the state level after
weighting for geographic scale. The data used in this analysis contains the average value for each
predictor for each epidemic week from January 3, 2010 to July 3, 2016 (344 epidemic weeks) only
for the state-level of Ceard. No mesoregion level or municipality level information was considered
in this analysis. Summary statistics for this data can be found in Table 2.

Previous distributed lag models for mosquito borne diseases do not provide an explanation on
how the truncation lag time L is selected, or how the degree of the polynomial D is selected. We
will analyze 3 different methods for selecting the truncation lag time, L, and set the degree of the
polynomial such that D = 8 since this has been used before in the literature. 8]

We will consider a few methods for selecting the truncation lag time L of the polynomial dis-

tributed lag model, summarized here:

e Simple lag selection: All variables have a truncation lag time of 9 weeks, or about 2
months. This is the minimum number of weeks that must be provided to create an 8" degree

polynomial.

11



e Marginal lag selection: All variables have a custom truncation lag time depending on when

the marginal lag coefficient becomes statistically insignificant for a = 0.05 T test. 1, 3,5, 25

e Minimized AIC lag selection: All variables have a custom truncation lag time depending

on when the Akaike’s Information Criteria (AIC) score is minimized for our given dataset.
1, 3, 9]

For the marginal lag selection, we select progressively higher truncation lag times starting with
L = 9 as our minimum acceptable truncation lag time until the marginal 8 coeflicient is statistically
insignificant based on a T-test with a = 0.05. To ensure that at least one [3; coefficient is statistically
significant, we first allow truncation times to increase until at least one [3; coefficient is statistically
significant then continue to increase the truncation lag time until the marginal 8, coefficient is
statistically insignificant. We repeat this analysis for all variables to find the best truncation lag
time. The SAS code for minimizing the AIC score can be found in Section 8.3.

For the minimized AIC lag selection, we select progressively higher truncation lag times starting
with L = 9 as our minimum acceptable truncation lag time until the AIC score is minimized for
our time set, with a maximum possible truncation lag of L = 343 since we have 344 weeks in our
dataset. The SAS code for minimizing the AIC score can be found in Section 8.4.

All polynomial distributed lag analysis was performed in SAS to provide robust analysis, AIC
statistics, t-tests for the § coefficients, and other outputs. All models were run with D = 8 degrees
of freedom for the polynomial defining the coefficient of each variable. It is also important to note
that SAS assumes a weighting factor of w; = 1 when constructing orthogonal polynomials in Proc
PDLREG.2U The code related to this process can be found in Section 8.2.

After selecting our truncation lag times, we construct univariate polynomial distributed lag
models for each of the variables of interest. For each of these models we calculate Total R2, a
measure of the amount of variance in output variable y explained by the variable of interest, x.
Based on the Total R?, we will select the best 8 predictors for each selection criteria and build a

multivariable model such that

L D
—co—i—ZZZadl xi(t —1)
i 1=0 d=0

=

To compare these models, we again look at the Total R?. The Total R? is not a good measure to
compare however because the value of Total R? always increases as more parameters are included
in a model. Instead we should use the Adjusted R? value to compare between groups.

(1 — R?)(N - 1)

R —
adj N—-p—-1 7

where N is the total number of observations and p is the number of parameters estimated by the
model. The Mean Square Error (MSE) for each model is also recorded, as this is sometimes used

as a selection criteria in place of the AIC score.

12



4 Results

In this section, we present the results, using the methodology described in Section 3. Please note
that the t-tests for the 8 coefficients used for the marginal lag selection procedure are not shown in
this paper.

Summarized in Table 3, Table 4, and Table 5 are the summary results for univariate analysis.
We can use the univariate analysis to select the variables of interest that appear to contribute the
most to predicting dengue cases in Ceara.

For the simple lag selection criteria (Table 3), the following 8 variables account for most of
the variation in dengue cases: mean NDVI, mean Green NDWI, percent cloudy pixels, relative
humidity, maximum temperature, mean temperature, minimum temperature, and Google Health
Trends. For the marginal lag selection criteria (Table 4), the following 8 variables account for most
of the variation in dengue cases: maximum NDVI, mean NDVI, mean Green NDWI, percent cloudy
pixels, relative humidity, maximum temperature, mean temperature, and Google Health Trends.
For the minimized AIC lag selection criteria (Table 5), the following 8 variables account for most
of the variation in dengue cases: mean NDVI, minimum NDVI, minimum Green NDWI, minimum
SWIR NDWI, maximum NBR, mean NBR, minimum NBR, percent cloudy pixels, and Google
Health Trends. These results are summarized in Table 6.

Using the variables that contribute the most information, we build multivariable models for
predicting dengue cases for each of the three truncation lag criteria. Each multivariable model
contains the top 8 predictor variables for each of the three truncation lag criteria. These models
have Total R? values of 0.6329, 0.8441, and 0.9996 for the simple, marginal, and minimized AIC
selection criteria respectively. To calculate the Adjusted R?, we use N = 344 and p = 1 +5m = 41,
given m = 8 variables of interest in the model. Therefore, the Adjusted R? values for each of the
models are 0.5831, 0.8229, and 0.9995 for the simple, marginal, and minimized AIC selection criteria
respectively. We find that the minimized AIC truncation lag selection yields the best prediction

model.

13



Variable Trunc. Lag AIC MSE | Total R? | Top 8 Predictors

Max NDVI 9 56486 1196693 | 0.0280
Mean NDVI 9 5602.72509 | 1042653 | 0.1531 *

Min NDVI 9 5656.01352 | 1222428 | 0.0071

Max Green NDWI 9 5656.0773 | 1222660 | 0.0069
Mean Green NDWI 9 5609.27173 | 1063229 0.1364 *

Min Green NDWI 9 5652.58196 | 1209970 | 0.0172

Max SWIR NDWI 9 5632.64173 | 1140050 | 0.0740

Min SWIR NDWI 9 5652.87109 | 1211014 | 0.0164

Max NBR 9 5654.76983 | 1217898 | 0.0108

Mean NBR 9 5650.76026 | 1203408 | 0.0225

Min NBR 9 5651.71766 | 1206888 | 0.0197
Percent cloudy pixels 9 5500.96624 | 769519 0.3750 *
Relative humidity 9 5508.04866 | 785961 0.3616 *
Max temperature 9 5518.25164 | 810268 0.3419 *
Mean temperature 9 5549.6948 | 890003 0.2771 *
Min Temperature 9 5623.74816 | 1110182 0.0983 *
Google Health Trends 9 5524.56899 | 825692 0.3293 *

Table 3: Table with output from SAS Proc PDLREG using simple lag selection for all variables of

interest.
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Variable Trunc. Lag AIC MSE | Total R? | Top 8 Predictors
Max NDVI 34 5189.72066 | 1057514 | 0.1935 *
Mean NDVI 29 5176.52079 | 777852 0.3996 *
Min NDVI 32 5267.45823 | 1218920 | 0.0660
Max Green NDWI 32 5268.45477 | 1222819 | 0.0631
Mean Green NDWI 28 5186.58308 | 762400 0.4100 *
Min Green NDWI 34 5203.63104 | 1106047 | 0.1565
Max SWIR NDWI 26 5342.89357 | 1124370 | 0.1254
Min SWIR NDWI 22 5414.02303 | 1138584 | 0.1050
Max NBR 41 5094.05975 | 1134559 | 0.1497
Mean NBR 26 5376.22542 | 1248621 0.0287
Min NBR 28 5358.56841 | 1166632 0.0971
Percent cloudy pixels 23 5253.26275 | 727064 0.4300 *
Relative humidity 21 5284.23871 | 723261 0.4299 *
Max temperature 25 5185.44743 | 651217 0.4922 *
Mean temperature 17 5408.74143 | 866756 0.3093 *
Min Temperature 35 5197.03646 | 1143019 0.1303
Google Health Trends 13 5448.90084 | 801559 0.3551 *

Table 4: Table with output from SAS Proc PDLREG using marginal lag selection for all variables

of interest. T-test for marginal 3, coefficient was done for a = 0.05.

15



Variable Trunc. Lag AIC MSE | Total R? | Top 8 Predictors
Max NDVI 127 3292.33084 | 204076 | 0.7554
Mean NDVI 190 2309.76637 | 179490 | 0.8330 *
Min NDVI 196 2214.2396 | 172478 | 0.8448 *
Max Green NDWI 197 2219.35809 | 197638 | 0.8228
Mean Green NDWI 190 2316.32149 | 187295 | 0.8266
Min Green NDWI 127 3269.23168 | 195383 | 0.7659
Max SWIR NDWI 150 2911.39525 | 183349 | 0.7934
Min SWIR NDWI 276 990.430203 | 108252 | 0.9424 *
Max NBR 275 993.369358 | 91628 0.951 *
Mean NBR 276 088.821444 | 105721 | 0.9437 *
Min NBR 194 2223.91416 | 150825 | 0.8632 *
Percent cloudy pixels 275 997.108919 | 96731 0.9483 *
Relative humidity 275 990.268283 | 87601 0.9531
Max temperature 198 2239.04167 | 250694 0.776
Mean temperature 196 2254.01681 | 225661 0.797
Min temperature 159 2791.91279 | 198705 | 0.7801
Google Health Trends 272 997.774975 | 53737 0.97 *

Table 5: Table with output from SAS Proc PDLREG using minimized AIC lag selection for all

variables of interest.
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Variable Simple | Marginal | Minimized AIC

Max NDVI *
Mean NDVI * * *
Min NDVI *
Max Green NDWI
Mean Green NDWI * *
Min Green NDWI *
Max SWIR NDWI
Min SWIR NDWI *
Max NBR *
Mean NBR *
Min NBR
Percent cloudy pixels * * *
Relative humidity * *
Max Temp. * *
Mean Temp. * *
Min Temp. *
Google Health Trends * * *

Table 6: Summary of top 8 variables found to be significant for each of the truncation lag selection
cases. The * indicates the variable was found to be significant for the given truncation lag selection

case.

5 Discussion

First, we analyze which selection type for the truncation lag time L created the best multi-variable
model of the given data set for Ceard, Brazil. Since, as stated in Section 4, Total R? always increases
with the introduction of more parameters, we choose to compare the models produced by the three
selection methods using the Adjusted R%. Based on the Adjusted R?, minimized AIC lag selection
produced the best model of the data provided. It is important to note however, that minimized
AIC lag selection also consistently chose a higher truncation lag time than the two other selection
criteria considered. This means that more data was used to inform the prediction for the minimized
AIC truncation lag model. This type of truncation lag criteria may be inefficient for larger datasets
as it implies a higher data use.

The marginal truncation lag model compared to the minimized AIC truncation lag model used
on average 229.1429 fewer weeks of information and had a 17.67% smaller Adjusted R? value. This

type of truncation lag criteria is more efficient than the minimized AIC truncation lag model, using
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much less data to inform a relatively strong prediction of the data.

Next, we analyze which variables of interest contribute the most to the risk of dengue. From in
Table 6, we can see that for all truncation lag selection cases, the following variables were found to
be significant: mean NDVI, percent cloudy pixels, and Google Health Trends. Since Mean NDVI
is an indicator of vegetation, this indicates that there is a strong relationship between available
vegetation and adult mosquito abundance. As discussed in Section 1.2, adult mosquitos feed on
plant sugars as their main energy source, therefore this finding is consistent with the literature.
This result is consistent with other papers that have quantified a relationship between vegetation

e.19: 11,15, 26] peycent cloudy pixels, which was also found to

and mosquito-born disease prevalenc
be significant across all models, was included in our analysis under the assumption that it may be
an indicator of rainy seasons or fog. Google Health Trends data, which reflects the relative volume
of internet searches for “dengue,” was significant across all selection criteria and has been shown in
the literature to be a possible predictor of dengue cases. [18, 23, 27)

Simple and marginal truncation lag selection both found the following predictors to be the most
significant: mean NDVI, mean Green NDWI, percent cloudy pixels, relative humidity, maximum
temperature, mean temperature, and Google Health Trends. As expected, maximum and mean
temperature were a significant indicator of dengue prevalence, which is consistent with the liter-
ature. Two of the five variables found to be significant across all models are indicators of water
content in the environment (Green NDWI and relative humidity). This is consistent with mosquito
development being highly dependent on water sources as described in Section 1.2.

The minimized AIC lag selection also exhibited another interesting trend: the majority of all
significant variables of interest generated an ideal truncation lag time of approximately 275 weeks,
or about 5 years. It has been shown in the literature that dengue occurs in 3 to 5 year period
cycles.[4’ 24 The minimized AIC lag selection criteria appears to identify this cyclic trend in the
data. The variables that exhibited this trend were minimum SWIR NDWI, maximum NBR, mean
NBR, percent cloudy pixels, and Google Health Trends. Minimum SWIR NDWI measures water
content in water bodies, a variable that changes slowly over time. Maximum and mean NBR may
be reflecting land development and not just fire damage due to how they are calculated. NBR
specifically reflects a reduction in Vegetation.[Q] These variables may therefore be influencers of the
more long term cyclic trends of dengue infection.

Similarly, for the marginal lag selection exhibited a trend where the majority of all significant
variables of interest generated an ideal truncation lag time of approximately 25 weeks, or about
half a year. The variables that exhibited this trend were mean NDVI, mean Green NDWI, percent
cloudy pixels, relative humidity, and maximum temperature. This may indicate that the short term
effects of these variables are significant for predicting reported dengue cases. We must note however
that percent cloudy pixels was identified as a predictor of both short and long term effects.

This model framework is highly dependent on the quality of our outcome data, reported dengue

cases. First, as mentioned in the Section 1, the reported case data does not include serotype
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information. Instead, we are predicting all dengue cases, regardless of serotype. Secondly, many
dengue cases are asymptomatic and therefore go unreported. Predictions and forecasts from a
models such as these would primarily be of benefit only to healthcare providers to treat and track
symptomatic, reported cases. These predictions may not fully reflect the disease burden of dengue

in a given area.

6 Summary and Conclusions

We applied a polynomial distributed lag model to the data provided for Ceara, Brazil, using simple,
marginal, and minimized AIC truncation lag selection criteria. It was found that the minimized
AIC truncation lag model provided the best fit to the data, but was inefficient at using the data
compared to the marginal lag model. For a larger dataset including all of the states of Brazil
or a subset of municipalities for example, the marginal truncation lag selection criteria could be
considered sufficient. These models were also developed on a state-level scale, though data was
provided at a municipality-level scale. To more accurately express the spatial heterogeneity in
disease burden, a higher resolution scale should be used now that it has been shown that the model
is valid at a low resolution scale.

The strong Adjusted R? value for both the marginal lag and minimized AIC truncation lag
models show that polynomial distributed lag models could be used to successfully predict reported
dengue cases in Ceara, Brazil. Future work would be to use these models to forecast reported
dengue cases, therefore giving public health professionals forewarning on the severity of upcoming
epidemics to create targeted, efficient interventions.

Furthermore, the ideal truncation lag results for minimized AIC criteria appeared to identify the
period of the cycle of dengue in Ceara. This periodicity in dengue epidemics has been shown to be
dependent on seasonal variation in vector demography and the number of dengue serotypes present
in the population. Patterns with 5 year cycles further indicate asymmetry in serotype virulence
and temporary cross—immunity.[?’g] Therefore, while all four serotypes of dengue are present in
Brazil,[SQ] this finding indicates that there may be asymmetry in their relative prevalence and
virulence in Ceard. As such, more serotype-specific data is essential to gather in order to create
targeted programs in Ceara.

The variables associated with this trend were indicators for large water sources, reduced vege-
tation, and increased internet searches for “dengue.” Monitoring these variables and understanding
their relationship with reported dengue cases would help improve interpretations of these models.

The ideal truncation lag results for marginal lag criteria identified predictors with short term
influence on the reported number of dengue cases. The variables associated with this trend were in-
dicators for healthy vegetation, water content in leaves, humidity, and temperature. These variables

have a more immediate effect in the expected disease burden of dengue for a given year.
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Of all the variables of interest provided, mean NDVI, percent cloudy pixels, and Google Health
Trends were found to be the significant predictors of reported dengue cases for Ceara, Brazil, across
all selection criteria. These findings were consistent with risk indicators found in the literature. It
is unclear what the implications are of percent cloudy pixels, which included in our analysis under
the assumption that it may be an indicator of rainy seasons or fog, and further research is needed
to assess the implications of this indicator.

The models developed here do provide evidence that dengue, a mosquito-borne disease, can be
predicted using satellite indicies and temperature data. Current epidemics with Zika and Chikun-
gunia in South America could be predicted and forecasted in a similar manner with this same model
and dataset, provided that reported case counts for at least 1 year are known. Since Zika is also
spread by A. aegypti, coefficient estimates for dengue could be used to make rough predictions of
the disease burden of Zika.
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8.1 R Code for Cleaning Dataset

All R code for creating the proper work environment.
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# rawDeng.RData, rawClustDeng.RData, rawStateDeng.RData,
datastreamsNov20.RData, datastreamsJan20.RData, datastreamsJan20.
RData

# =xxstored in a folder called "RData” in your working directory (wd)

# municipios _2010 shapefiles

# #*xstored in a folder called "municipios_2010"

# xEpidemic _Weeks _BRA.csv is currently not being used. User can comment
lines 126—132 if they do not have this.

# Google Trends csv files

# #*xstored in a folder called "raw—data”

#

# Edit the wd lines before running. Check that you have all the

necessary libraries installed.

##Clear the work environment

m(list=Is())

#Set working directory

setwd (” /Volumes/Jessie 's Hard Drive/LANL_Items/Research”) #/Volumes/
LIFELINE/LANL_Items/Research

home = setwd(”/Volumes/Jessie ’s Hard Drive/LANL_Items/Research”) #/
Volumes /LIFELINE /LANL_Items /Research

library (xtable)
library (matrixStats)
library (sp)
library (rgdal)
library (raster)

library (ggplot2)

library (lattice)
library (RColorBrewer)
library (classInt)
library (reshape2)

(
(
(s
(
(
(
library (plyr)
(
(
(
(
(

library (maptools)
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library (gridExtra)
library (mgcev)
library (dlnm)

BRAadm2 = readOGR(” municipios 2010”7 ,” municipios _20107)

names (BRAadm2) [ names (BRAadm2)=="codigo -ibg ' |<— "Mun_Number’

names (BRAadm2) [ names (BRAadm2)=—"nome’| <— 'Mun_Resid BR’

names (BRAadm2) [ names (BRAadm2)=—"estado _id '] <— ’State _Number’

names (BRAadm2) [names (BRAadm2)=—="uf’| <— ’State_ID’

BRAadm2$Mun_Number = substr (BRAadm2$Mun_Number,1 ,nchar(as.character (
BRAadm2$Mun_Number) ) —1)

BRAadm2$Mun_Number <— as.numeric (BRAadm2$Mun_Number )

assign ("BRAadm2” ,BRAadm2, . GlobalEnv)

BRAadml = readOGR(” estados _2010” ,” estados 20107

names (BRAadml) [names (BRAadml)=="id ’ |<—’State -Number’

names (BRAadml) [ names (BRAadml)=—="nome’ | <— ’'State _Name’

names (BRAadml) [names (BRAadml)=="sigla | <— ’State_ID’

assign ("BRAadml” ,BRAadml, . GlobalEnv)

fpath = file .path(home,”RData” ,” datastreamsJan20.RData” )

load (fpath)

fpath = file .path (home,” RData” ,” datastreamsJan20 _meso.RData”)
load (fpath)

fpath = file.path(home,” RData” ,” datastreamsJan20_state.RData”)
load (fpath)

datastreams <— c(”max_ndvi”, "mean_ndvi”, "min_ndvi”, "max_green _ndwi” ,
"mean _green _ndwi” , "min_green _ndwi” ,
"max_swir _ndwi” , "min_swir _ndwi” , "max_nbr” , "mean_nbr
7, "min_nbr” , "percent _cloudy_pixels”
relhum” | 7tmax” , ”tmean” , ”tmin”)

fpath = file.path (home,” RData” ,”rawDeng.RData”)
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load (fpath)
fpath = file.path (home,” RData” ,” rawClustDeng.RData” )
load (fpath)
fpath = file .path(home,” RData” ,”rawStateDeng.RData”)
load (fpath)

) —2)], dlist1

Deng. all <— cbind (dlist1 [[1]]][,1:(ncol(dlistl [[1]]
,3:(ncol(dlistl [[3]])

[[2]]],3:(ncol(dlistl [[2]])—2)], dlistl [[3]]]
-2)],

! dlistl [[4]][,3:(ncol(dlistl [[4]])—2)], dlistl
[[5]]],3:(ncol(dlistl [[5]])—2)], dlistl [[6]][,3:(
ncol (dlistl [[6]])—2)],

dlist1 [[7]]],3 (ncol(dlistl[[?]})—?)])
Deng. all .state <— cbind (dlist4 [[1]][,1:(ncol(dlist4 [[1]])—2)],dlist4
[[2]][,2:(ncol(dlist4d [[2]])—2)], dlist4 [[3]][,2:(ncol(dlist4d[[3]])

-2)],
dlist4 [[4]]],2:(ncol(dlist4 [[4]])—2)], dlist4
[[5]][,2:(ncol(dlist4 [[5]])—2)], dlist4
[16]]1,2: (neol (dlist4 [[6]]) —2)],
dlist4 [[7]]],2:(ncol(dlistd [[7]])—2)])
Deng. all .meso <— as.data.frame(cbind (dlist7 [[1]][,1:(ncol(dlist7[[1]])
—2)],dlist7 [[2]]],2:(ncol(dlist7 [[2]])—2)], dlist7[[3]]],2:(ncol(

dlist7 [[3]]) =2)],
dlist7 [[4]][,2:(ncol(dlist7 [[4]])
—2)], dlist7 [[5]]],2:(ncol(
dlist7 [[5]])—2)], dlist7
[[6]]].2:(ncol(dlist7 [[6]])—2)
}7
dlist7 [[7]][,2:(ncol(dlist7 [[7]])

-2)1))

municipality _list <— dlistl

state_list <— dlist4

mesolevel _list <— dlist7

rm(list = ¢(’dlistl ’, dlist4d ', dlist7 7))
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idx <— sapply (datastreamsLIST [[1]] $Mun_Number, function (x) {
which (municipality -list [[1]] $Mun_Number = x) })
for (i in 1:7){
municipality _list [[i1]] <— municipality ~list [[i]][ unlist (idx) ,]
}

Deng. all <— Deng. all [unlist (idx) ,]

idx <— sapply(datastreamsLIST _state [[1]]$State _Number, function(x) {
which(state _list [[1]] $State _Number = x) })

for (i in 1:7){
state_list [[1]] <— state_list [[1]][unlist(idx) ,]

}

Deng. all .state <— Deng. all.state[unlist (idx) ,]

idx <— sapply (datastreamsLIST _meso [[1]]$Meso_Number, function(x) {
which (mesolevel _list [[1]]$cluster = x) })

for (i in 1:7){
mesolevel _list [[i]] <— mesolevel _list [[i]][unlist (idx) ,]

}

Deng. all .meso <— Deng. all .meso[unlist (idx) ,]

fpath = file .path (home,” Dengue_data” ,” Epidemic_Weeks BRA.csv”)
epi.weeks <— read.csv(fpath, header = TRUE)
epi.weeksl <— c(as.character(epi.weeks[1:52,2]) as.character (epi.weeks
[1:52,3]) ,as.character (epi.weeks[1:52 ,4]),
as.character (epi.weeks[1:52 ,5]) ,as.character (epi.weeks
[1:53,6]) ,as.character (epi.weeks[1:52,7]),
as.character (epi.weeks[1:52,8]))
epi.weeksl <— as.Date(epi.weeksl, "%m/%d/%y”)
epi.weeksl <— epi.weeksl[1l:ncol(Deng.all)]

datastreams <— c(”max_ndvi”, "mean_ndvi”, "min_ndvi”, "max_green _ndwi” ,
"mean _green _ndwi” ; "min_green _ndwi” ,
"max_swir _ndwi” , "min_swir _ndwi” , "max_nbr” , "mean_nbr
7, "min_nbr” , "percent _cloudy_pixels”,
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"relhum” | 7tmax” , ”tmean” , "tmin”)

for (i in 1:length(datastreams)){ +#This loop unzips the list
separate elements

into its

assign (paste (datastreams[i]), datastreamsLIST _state[[i]], .GlobalEnv)

state <— c(’AC’, "AL’,’AM’, 'AP’,’BA’, 'CE’, 'DF’, 'ES’, 'GO’, MA’, ’
MG, "MS’, "MT" |
'PA’, 'PB’, °'PE’, 'PI’, 'PR’,’RJ’, 'RN’,’RO’, 'RR’,’RS’, °
SC’, 'SE’, 'SP’,'TO’)

# Create functions to be used
grab.google.data <— function (state _num=6){
## Function to grab Google Health data
fpath = file.path(home,”raw—data” ,paste (”BR-", state[state _num],”
", sep =""))
health.trends.data.mun <— read.csv(fpath, header = TRUE, sep = 7.”
colClasses = c(”Date” ,rep (" numeric” ,20)))
fpath = file.path(home,”raw—data” ,”"BR.csv”)
health.trends.data <— read.csv(fpath, header = TRUE, sep = "7,”
colClasses = c(”Date” ,rep (”numeric” ,20)))

.CSVv

assign (" health.trends.data.state”, health.trends.data.mun, .GlobalEnv

)

assign (” health.trends.data”, health.trends.data, .GlobalEnv)

select .season <— function (season ,mydat, flag="off"){

#Decide on season subset. Seaons are set

up such that they follow

this:
+# Dengue Season: Jan — April Wk 1:18 of a year (18 weeks)
+# Pre—Dengue Season: May—Aug Wk 19:35 of a year (17 weeks)
# Post—Dengue Season: Sept—Dec Wk 36:52 of a year (17 weeks [18

weeks for 2014])
#The data we have is Jan 2010 through July 2016
mydata2 <— mydat

if (season=="Dengue”) {

seas <— ¢(1:18,53:70,105:122,157:174,209:226,262:279,314:331)
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print ("You are calling Dengue season. 2016 data is available for
forecasting this season.”)
} else if (season=—="Post—Dengue”) {
seas <— ¢(19:35,71:87,123:139,175:191,227:243,280:296,332:344)
print ("You are calling Post—dengue season. 2016 data is missing 4
weeks of this season. Forecasting is limited.”)
} else{
seas <— ¢(36:52,88:104,140:156,192:208,244:261,297:313)
print ("You are calling Pre—dengue season. 2016 data is missing for
this season. 2015 will be used for forecasing.”)
}
if (flag="oft"){
epi.weeks2 <— epi.weeksl[seas]
assign (7 epi.weeks2” Jepi.weeks2 ,. GlobalEnv)
}
mydata2 <— mydata2|[which (mydata2$season=—season) ,]
return (mydata2)

set .data <— function (state _num=6,seasonl) {
grab.google.data(state _num)
caseofinterest = Deng. all.state [which(Deng. all.state$State _Number =—
state _num) ||

caseofinterestl <— caseofinterest [2:length(caseofinterest)]

idx <— which(mean_ndvi$State Number = state _num)
mydata <— data.frame(time = 1:344, dengue_cases = t(caseofinterestl),
max_ndvi = t(max_ndvi[idx ,3:346]), mean_ndvi= t(
mean_ndvi[idx ,3:346]) , min_ndvi= t(min_ndvi|
idx ,3:346]) ,
max_green _ndwi = t(max_green _ndwi[idx ,3:346]),
mean_green _ndwi = t(mean_green _ndwi[idx
,3:346]) , min_green_ndwi = t(min_green _ndwi|
idx ,3:346]) |
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max_swir _ndwi = t(max_swir _ndwi[idx ,3:346]), min
_swir _ndwi = t(min_swir _ndwi[idx ,3:346]) ,

max_nbr = t(max_nbr[idx ,3:346]) ,mean_nbr = t(
mean_nbr[idx ,3:346]) ,min_nbr = t(min_nbr[idx
,3:346]) ,

percent _cloudy _pixels = t(percent_cloudy_pixels |
idx ,3:346]) , relhum = t(relhum[idx ,41:384]),

max_temp = t(tmax[idx ,41:384]) ,mean_temp = t(
tmean [idx ,41:384]) , min_temp = t(tmin[idx

,41:384])
google _trends = health.trends.data.state
[1:344,3])
mydata.names <— c(”time” , ”"dengue_cases”, "max_ndvi”, "mean_ndvi”,6 7
min_ndvi” ; "max_green _ndwi” , "mean_green _ndwi” , "min_green _ndwi” ,
"max_swir _ndwi” ; "min_swir _ndwi” , "max_nbr” , "mean_
nbr” , "min_nbr” , "percent _cloudy_pixels”
"relhum” , "max_temp” , "mean_temp” , "min_temp” , ”

google _trends”)

colnames (mydata) <— mydata.names

mydata$season <— c¢(1:344)

mydata$season [c(1:18,53:70,105:122 ,157:174,209:226,262:279,314:331) ]
<— " Dengue”

mydata$season [c(19:35,71:87,123:139,175:191,227:243,280:296,332:344) |
<— "Pre—Dengue”

mydata$season [c(36:52,88:104,140:156,192:208,244:261,297:313)] <— ”
Post—Dengue”

mydata$year <— c¢(rep(2010,52) ,rep(2011,52) ,rep(2012,52) ,rep(2013,52),
rep (2014 ,53) ,rep(2015,52) ,rep (2016,31))

assign ("mydata” ;mydata ,. GlobalEnv)

assign ("mydata.names” ;mydata.names,. GlobalEnv)

mydata.season.raw <— select.season(seasonl, mydat = mydata)

assign ("mydata.season.raw” ;mydata.season.raw ,.GlobalEnv)
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state _num <— 6

state [state _num]

8.2 SAS Code for Proc PDLREG

All SAS code for Proc PDLREG procedure. Example code shown here is for Maximum NDVI with

truncation lag L = 5 and degrees of freedom D = 8 for the polynomial constructing the coefficients.

proc import out= mydat datafile= ’C:/Users/jconrad4/Documents/ceara _
data.xlsx’

dbms=xlsx replace;

getnames=yes ;

run ;

proc pdlreg data=mydat;

model dengue_cases = max_ndvi(5.,4);

ods output FitSummary=testset ;

run;

8.3 SAS Macro Code for Marginal

All SAS code for finding when the marginal coefficient of the polynomial distributed lag model is

equivalently zero. This was made in reference to the SAS manual for Proc Pdlreg. 120
%macro marginalloop (xvar) ;
proc import out= mydat datafile= 'C:/Users/jconrad4/Documents/ceara _

data.xlsx’
dbms=xlsx replace;
getnames=yes ;
run;
%let n=9; /x first lag case to test x*/
proc pdlreg data=mydat;
model dengue_cases = &xvar (&n,8) ;
ods output LagDist = testset;
run;
/x first lag case to test x/
data lastrow;
if 0 then set testset nobs=nobs end=eof;
set testset point = nobs;

output;
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stop;

run;

data _null _;

set lastrow;

call symputx(”BTerm” , Probt);

run;

%put BTerm = &BTerm . ;

/* Do loop until terminal coeff insignificant x/

%do %until (&BTerm < 0.10) ;

Y%put n=&mn . ;
%let n=%eval (&n. + 1); /+ &n holds the value x/
ods exclude all; /* suspend all open destinations x/

proc pdlreg data=mydat;

model dengue_cases = &xvar (&n,8) ;
ods output LagDist = testset;
run;

/* find minimum prob(t) =/
proc sort data=testset ;

by Probt; run;

proc sort data=testset (obs=1);
by Probt; run;

data _null_;

set testset;

call symputx(”BTerm” , Probt);
run ;

%put BTerm = &BTerm . ;

%end ;

/* find minimum marginal t =/

%do %until (&BTerm > 0.10) ;

Y%put n=&mn . ;
%let n=%eval (&n. + 1); /* &n holds the value x/
ods exclude all; /* suspend all open destinations =/

proc pdlreg data=mydat;

model dengue_cases = &xvar (&n,8) ;
ods output LagDist = testset;
run;

data lastrow;

if 0 then set testset nobs=nobs end=eof;
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set testset point = nobs;
output;

stop ;

run ;

data _null _;

set lastrow;

call symputx(”BTerm” , Probt);
run;

Y%put BTerm = &BTerm . ;

Y%end ;

/% Print final result %/
ods exclude none;

proc pdlreg data=mydat;
model dengue_cases = &xvar (&n,8) ;
run;

Y%mend marginalloop ;

%marginalloop (max_ndvi) ;

8.4 SAS Macro Code for Minimizing AIC Score

All SAS code for minimizing the AIC score of the polynomial distributed lag model. This was made

in reference to the SAS manual for Proc Pdlreg. 120)
Y%macro AICloop (xvar);
proc import out= mydat datafile= ’C:/Users/jconrad4/Documents/ceara _

data.xlsx’

dbms=xlsx replace;

getnames=yes ;

run ;

%let n=9; /x first lag case to test x/
proc pdlreg data=mydat;

model dengue_cases = &xvar (&n,8) ;

ods output FitSummary=testset ;

run ;

data _null_;

set testset;

if Label2="AIC” then call symputx(”AlCnew” , nValue2);
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run ;
Y%put AlCnew = &AICnew .

%put AICold = 1000000000;/% Arbitrarily large to initialize loop x/
/* Do loop while AIC decreases x/

%do %until (&AICnew > &AICold);

Y%put n=&n . ;

%let n=%eval(&n. +1); /* &n holds the value x*/

%let AICold = &AICnew; /x Replace AICold with previous AlICnew value x/
%put AlICold = &AICold;

ods exclude all; /* suspend all open destinations x*/
proc pdlreg data=mydat;

model dengue_cases = &xvar (&n,8) ;

ods output FitSummary=testset ;

run ;

data _null_;

set testset;

if Label2="AIC” then call symputx(”AlCnew” , nValue2);

run ;

%put AlCnew = &AICnew

Y%end ;

/* Print final result x/

ods exclude none;

proc pdlreg data=mydat;

model dengue_cases = &xvar (&n,8) ;

run ;

%mend AICloop;

%AICloop (max_ndvi) ;

34



