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ABSTRACT
Infectious disease burden is continuing to increase around the
globe. These diseases have increased, in part, due to global-
ization, human behavior, and environmental changes. There
is an urgent need for improved prediction of their spread so
that mitigation techniques and treatments can be administered
proactively rather than just reactively. One of the challenges
is that many regions of interest are in hard-to-reach locations,
and as such, clinical surveillance data (reliant upon self-
reporting) can be both sparse and lagging. Remote sensing
imagery is an attractive data source to exploit for this appli-
cation as it provides real-time information without having to
physically be on the ground. Here, we derive standard indices
from multispectral imagery, and explore how predictive they
are for forecasting dengue incidence in Brazil. This is done
on broad spatial and temporal scales, covering all of Brazil
for multiple years. Results will show that the normalized
difference vegetation index is a leading predictor for dengue
incidence.

Index Terms— multispectral, remote sensing, mosquito-
borne disease, forecasting, dengue, Brazil

1. INTRODUCTION

Traditionally, epidemiology has focused on the study of pub-
lic health data and the assessments of health programs in
order to devise optimal prevention as well as educational
programs. However, these approaches lack the ability to
predict and forecast disease trends based on complex links
among humans, technology, and the environment [1, 2]. For
instance, environmental changes can play a major role in
public health, but are not always captured in disease surveil-
lance systems [3, 4]. These environmental changes may be
due to climate change (e.g., droughts, rise in temperature,
wildfires) or human-driven activities (e.g., construction, pol-
lution, deforestation). Multispectral remote sensing imagery
(Fig. 1) provides a means for remotely characterizing many of
these changes, albeit some more straightforwardly than oth-
ers [5–8]. In this study we leverage clinical surveillance data
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for dengue in Brazil, as well as access to a centralized im-
age repository for different satellites [9], in order to analyze
the effectiveness of satellite-derived indices for predicting
dengue incidence. This is part of a larger effort that integrates
Internet data (e.g., social media, online searches) [10], clima-
tological data, demographic data, and remote sensing data,
with the aim of developing a heterogeneous data forecasting
tool for dengue incidence in Brazil.

Fig. 1: Illustration of Landsat 8 collecting spectral image
swaths over Brazil. We leverage this broad-scale, repeatable
image collection for time series analysis of spectral indices.

2. THE ROLE OF REMOTE SENSING

When integrating multiple data sources into a predictive
model, subject matter expertise is critical in order to provide
context to the different data sources. The primary contributor
to the spread of mosquito-borne diseases is the presence of
standing water. In terms of remote sensing, there are vari-
ous secondary indicators that—while they may not directly
measure standing water—can be correlated to standing water
and thus serve as proxy measurements. We looked at the nor-
malized difference vegetation index (NDVI, Eq. 1) [11], two
versions of the normalized difference water index (NDWI,
Eqs. 2 & 3) [12], and the normalized burn ratio (NBR,
Eq. 4) [13], as well as the percentage of cloud cover within
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the given area of interest. NDVI is an indicator of healthy
green vegetation, NDWI1 is an indicator of water content in
leaves, NDWI2 is an indicator of water content in large wa-
ter bodies, and NBR is an indicator of burned areas and fire
severity. High NDVI, NDWI, and percentage of cloud cover
can all be linked to high rainfall, which in turn correlates to
increased standing water. Brazil has also had wildfires within
the last decade, making NBR important in order to account
for that change in environment.

NDVI =
NIR - Red
NIR + Red

(1)

NDWI1 =
Green - NIR
Green + NIR

(2)

NDWI2 =
NIR - SWIR1

NIR + SWIR1
(3)

NBR =
SWIR1 - SWIR2

SWIR1 + SWIR2
(4)

3. EXPERIMENT AND RESULTS

Our clinical surveillance data for dengue in Brazil covers
2010-2017 on a weekly basis (specifically epidemiological
weeks), and is at the municipality level. At present, Brazil
has 5,570 municipalities, which are combined into 136 meso-
regions. Fig. 2 illustrates dengue incidence in 2015 when
combined at the meso-region level.

Fig. 2: Total cases in Brazil in 2015 at the meso-region level.

For each week, for each municipality, for seven years, we
computed the NDVI, NDWI1, NDWI2, and NBR for every
pixel in the municipality, and then aggregated the results to
municipality-level statistics. So, for each municipality, on a

weekly basis we have: the mean, min, max, and standard de-
viation of all of the pixel-level NDVI, NDWI1, NDWI2, and
NBR values, as well as the percentage of cloudy pixels, for
a total of 17 different values; this resulted in an overall com-
putation of over 32,000,000 satellite-derived metrics. We also
leveraged four multispectral satellites in this process: Landsat
5, Landsat 7, Landsat 8, and Sentinel-2. We used Descartes
Labs’ imagery platform to access the imagery in a central-
ized manner, completing all of the computations in python
while leveraging their python-based API. This study utilized
every Landsat 5, 7, 8 and Sentinel-2 image that covered Brazil
over the seven year period, for a total of over 26 terabytes of
imagery. Our analysis showed that NDVI was the most pre-
dictive for dengue incidence, and as such is the focus of the
results presented here (Fig. 3).

(a)

(b)

Fig. 3: Distributed lag nonlinear model for (a) average NDVI
= 0.2 (indicating relative risk), and (b) multiple values of av-
erage NDVI. The heat map in (b) is used to find the optimal
lag for correlating average NDVI with dengue incidence.
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Distributed lag nonlinear models were used for this anal-
ysis. They allow for quantification of how a particular data
source contributes to the prediction of dengue incidence as ei-
ther a leading or lagging indicator. Results here suggest that
high NDVI is associated with a 5-week leading indicator, or
in other words, if NDVI is high, then in about 5 weeks there
will be an uptick in dengue incidence. This is consistent with
mosquito breeding rates, as the lag time from standing wa-
ter to mosquito breeding is about 5 weeks. In the risk map
shown here, if NDVI is low, then there will be fewer dengue
cases in the near future (the blue portion of the risk map), and
if NDVI is high, there will be more dengue cases in the near
future (the red portion of the risk map). These results are be-
ing integrated into a larger heterogeneous forecasting model,
outside of the scope of this paper.

4. CONCLUSIONS

The spread of infectious and mosquito-borne diseases has im-
portant implications for public health as well as regional sta-
bility, in turn affecting national security. The implications of
vector-borne diseases are far-reaching. As such, a capabil-
ity for better predicting and forecasting the spread of these
diseases would be of high utility, as it would enable miti-
gating and preventative action to take place. This paper ex-
plores the utility of using multispectral remote sensing im-
agery for predicting dengue incidence in Brazil, as remote
sensing is an appealing data source to leverage for hard-to-
reach areas. Results of this study demonstrate that out of
the considered indices, NDVI is the most consistently pre-
dictive, and in particular is a 5-week leading indicator for in-
creased dengue incidence. Our study was as comprehensive
as possible from a remote sensing standpoint, leveraging ev-
ery moderate-resolution global-coverage satellite that imaged
Brazil over a seven year period, ultimately utilizing over 26
terabytes of imagery. The results of this study are being in-
tegrated into a heterogeneous forecasting model that—in ad-
dition to remote sensing—utilizes climatological data, demo-
graphic data, Internet data, and clinical surveillance data.
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